- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Nut Jantaraksa; Pattarapan Prasassarakich; Prasert Reubroycharoen; Napida Hinchiranan;Abstract Waste tires are attractive sources for alternative energy due to their long hydrocarbon chains with a high heating value. However, the condensed (volatile portion) pyrolysis oil derived from waste tires contains a relatively large level of sulfur compounds (1.15 wt%), which is not appropriate for use in combustion engines. Therefore, this research aimed to improve the waste tire pyrolysis oil (WTPO) via hydrodesulfurization (HDS) catalyzed by molybdenum (Mo), nickel–Mo (NiMo) or cobalt–Mo supported on alumina (γ-Al 2 O 3 ). The maximum % sulfur removal (87.8%) was achieved when the reaction was performed at 250 °C for 30 min using a 2 wt% NiMo/γ-Al 2 O 3 catalyst loading based on the WTPO content and 20 bar initial hydrogen pressure. The amount of sulfurous compounds in the waste tire pyrolysis oil was determined using gas chromatography spectroscopy equipped with a flame photometric detector (GC–FPD). The HDS of the WTPO was effective to reduce the sulfurous compounds, especially thiophene and its derivatives. The results from the simulated distillation gas chromatography (GC–SIMDIS) showed that the hydrodesulfurized WTPO (HDS-WTPO) was mainly composed of a light naphtha fraction (ca. 69%). The heating value of the HDS-WTPO (44 MJ/kg) was similar to those for commercial diesel (45 MJ/kg) and gasoline (gasohol) fuels (47 MJ/kg).
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV K. Klaigaew; K. Kangwansaichol; Prasert Reubroycharoen; P. Wattanapaphawong; Napida Hinchiranan; N. Khuhaudomlap; P. Kuchontara;AbstractRenewable fuels are major alternatives to fossil fuels. Biomass was considered as raw materials and renewable energy sources. Pyrolysis process is one of the efficient methods for converting biomass in bio-oil. This work investigates the pyrolysis of Giant Leucaena wood in liquid phase by various conditions: The experiments were conducted in an autoclave at following conditions; temperature of 325–400°C, holding time of 0–60min, biomass 250 gram, NiMo/Al2O3 catalyst weight (0–30 percent by weight) by using hexane as a solvent. Bio-oils were analyzed by gas chromatography–mass spectrometry to identify the structure and chemical compounds, also by CHN analyzer. The results showed that the liquid products were phenolic compounds, cyclic compounds and furans which were determined by gas chromatography.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Sasithorn Sunphorka; Napida Hinchiranan; Prapan Kuchonthara; Kunn Kangvansaichol; +1 AuthorsSasithorn Sunphorka; Napida Hinchiranan; Prapan Kuchonthara; Kunn Kangvansaichol; Keerati Prapaiwatcharapan;pmid: 25913031
This work investigated an influence of operating conditions on the biocrude yield and properties obtained from hydrothermal liquefaction (HTL) of Coelastrum sp. microalgae in a two-step sequential HTL (THTL) and a single-step HTL (SHTL) using a semi-continuous system. A higher biocrude yield with a lower nitrogen content was obtained with the THTL process than the SHTL one. The operating temperature, pressure and water flow rate were sequentially varied in a univariate analysis for a 2 h reaction time to optimize the obtained biocrude yield. Increasing the temperature improved the biocrude yield, but the second step temperature should not be higher than 320 °C to prevent the thermal cracking to gaseous compounds. The optimal conditions of THTL were preliminarily temperature of 200 and 320 °C and pressure of 7 and 20 MPa for the first and second step, respectively, both with a water flow rate of 0.50 mL/min.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.04.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.04.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV P. Narksri; S. Angnanon; J. Guntasub; K. Wijitrattanatri; S. Kingputtapong; S. Phumpradit; N. Hinchiranan;Abstract The extremely increasing amount of plastic waste due to the development of human society, economics and urbanization is an emergency task that must be urgently handled in order to reduce environmental problems. Although the plastic wastes can be converted to alternative liquid fuels through pyrolysis process, the compositions in the pyrolysis oil depended on the chemical structure of raw materials and pyrolysis condition affect its quality. Thus, this research aimed to comparatively investigate the production of alternative liquid fuels obtained from mixed plastics containing polystyrene (PS)/polyethylene terephthalate (PET)/polyethylene (PE)/polypropylene (PP) at 20/5/35/40 (w/w) via non-catalytic cracking (under N2 atmosphere), non-catalytic hydrocracking (under H2 atmosphere), and catalytic hydrocracking over 10 wt% Ni/SBA-15 catalyst conducted at an atmospheric pressure and 650 °C for 1 h. The product yields and chemical compositions (paraffins, olefins, aromatics and PAHs) in the liquid products generated from these processes were investigated and also compared to ones obtained from the non-catalytic processes of each plastic. Herein, the characteristics of 10 wt% Ni/SBA-15 catalyst was analyzed by N2-adsorption/desorption, X-ray diffraction (XRD), and H2-temperature programmed reduction (H2-TPR). The results indicated that the non-catalytic processes of PS provided the highest content of oil and wax product (ca. 92 wt%). Whereas, the non-catalytic hydrocracking of the mixed plastics gave the lowest one (ca. 69 wt%). However, the catalytic hydrocracking over 10 wt% Ni/SBA-15 catalyst (2.5 – 10.0 wt% based on the mixed plastics) could suppress the cracking and yielded the higher amount of oil and wax to ca. 76–80 wt%. To consider the chemical compositions in the liquid phase, the PAHs formation was relied on the aromatic structure in the feedstocks. The liquid product derived from the non-catalytic processes of PS contained the highest amount of PAHs compounds (2622–2926 ppm) followed by the mixed plastics. When the 10 wt% Ni/SBA-15 catalyst was applied to the catalytic hydrocracking of the mixed plastics, the amount of PAHs in the liquid product decreased from 1621 ppm to ca. 1000 ppm (30 – 40% PAHs reduction) without the reduction of heating value when compared to one obtained from the non-catalytic processes.
Materials Today Proc... arrow_drop_down Materials Today ProceedingsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2021.09.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Materials Today Proc... arrow_drop_down Materials Today ProceedingsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2021.09.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011Publisher:MDPI AG Authors: Phakakrong Trongkaew; Thanes Utistham; Prasert Reubroycharoen; Napida Hinchiranan;doi: 10.3390/en4111880
Waste tire pyrolysis oil has high potential to replace conventional fossil liquid fuels due to its high calorific heating value. However, the large amounts of sulfurous compounds in this oil hinders its application. Thus, the aim of this research was to investigate the possibility to apply the photo-assisted oxidation catalyzed by titanium dioxide (TiO2, Degussa P-25) to partially remove sulfurous compounds in the waste tire pyrolysis oil under milder reaction conditions without hydrogen consumption. A waste tire pyrolysis oil with 0.84% (w/w) of sulfurous content containing suspended TiO2 was irradiated by using a high-pressure mercury lamp for 7 h. The oxidized sulfur compounds were then migrated into the solvent-extraction phase. A maximum % sulfur removal of 43.6% was achieved when 7 g/L of TiO2 was loaded into a 1/4 (v/v) mixture of pyrolysis waste tire oil/acetonitrile at 50 °C in the presence of air. Chromatographic analysis confirmed that the photo-oxidized sulfurous compounds presented in the waste tire pyrolysis oil had higher polarity, which were readily dissolved and separated in distilled water. The properties of the photoxidized product were also reported and compared to those of crude oil.
Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/11/1880/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4111880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/11/1880/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4111880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Keerati Prapaiwatcharapan; Prapan Kuchonthara; Napida Hinchiranan; Kunn Kangvansaichol; +1 AuthorsKeerati Prapaiwatcharapan; Prapan Kuchonthara; Napida Hinchiranan; Kunn Kangvansaichol; Sasithorn Sunphorka;We evaluated two-step hydrothermal liquefaction in a semi-continuous reactor for recovery of both nutri- ents and biocrude from the alga Coelastrum sp. in direct comparison with a one-step process. The influence of the operating temperature, pressure and water flow rate was investigated by means of a 2 k factorial experimental design and response surface methodology. The two-step process gave a higher total biocrude yield (~36 wt% (daf. basis)) and nutrient recovery level in terms of nitrogen containing compounds (~60 wt% of the protein content in the original algae as ammonium and nitrate ions and protein/polypeptides) than the single-step process. The highest biocrude yield was achieved at first-step temperature of 473 K, second-step temperature of 593 K, pressure of 200 bar and water flow rate of 0.5 mL/min.
Korean Journal of Ch... arrow_drop_down Korean Journal of Chemical EngineeringArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11814-014-0165-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Korean Journal of Ch... arrow_drop_down Korean Journal of Chemical EngineeringArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11814-014-0165-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Surachet Hongkailers; Supanut Phumpradit; Chanisara Phanpa; Adisak Pattiya; Chawalit Ngamcharussrivichai; Toshiyuki Yokoi; Napida Hinchiranan;Transformation of some oxygenated compounds in bio-oil derived from biomass pyrolysis via hydrodeoxygenation (HDO) generally improves its quality and potentially produces bio-based chemicals. Although alumina (Al₂O₃) supported catalysts are normally applied for HDO, they have certain limitations, such as acidity and high susceptibility to water, which need to be improved. In this research, an Al2O3-incorporated zirconia (ZrO2) composite (AZ) was prepared as a support of nickel (Ni)-molybdenum (Mo) catalysts used for HDO of guaiacol (GUA) and real bio-oil derived from pyrolysis of Leucaena leucocephala trunks to produce phenols. In the absence of water, the NiMo catalyst supported on AZ at 1/1 Al2O3/ZrO2 molar ratio [NiMo/AZ(1/1)] having higher reducibility with a greater number of weak-medium acid sites provided >98% GUA conversion with 87% selectivity to phenols. In the presence of water, the NiMo/AZ(1/1) catalyst maintained its catalytic activity, whereas NiMo/Al2O3 catalyst showed its deactivation to obtain the lowering GUA conversion (27.1% reduction). The FESEM and 27Al-NMR analyses revealed that the addition of ZrO2 improved the water tolerance of the catalyst by protecting the Al2O3 structure and preventing the transformation of Lewis acid-related tetrahedral Al to octahedral Al. Moreover, the NiMo/AZ(1/1) catalyst exhibited the highest HDO activity for real bio-oil without solvents, achieving a maximum oil yield of 25.2 wt% with 75.6% selectivity to phenols and the lowest coke formation.
Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2024.100858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2024.100858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Huiyan Zhang; Prapan Kuchonthara; Chanisara Phanpa; Prasert Reubroycharoen; Napida Hinchiranan; Patiphat Sangnikul; Tharapong Vitidsant; Rui Xiao; Adisak Pattiya;Abstract Effect of copper (Cu) or cerium (Ce) as promoters for nickel-molybdenum/γ-alumina (NiMo/γ-Al2O3) catalyst on the hydrodeoxygenation (HDO) of guaiacol (GUA), a model oxygenated compound found in a bio-oil derived from woody biomass, was comparatively investigated. The addition of Cu- or Ce-promoters affected the physicochemical properties of the NiMo catalyst. The NiMo catalyst promoted by Cu showed the higher reducibility, whilst the Ce-promoter (2–8 wt% based on γ-Al2O3 content) provided the NiMo catalyst with a higher distribution of active metals and induced a greater difficulty in the reduction under hydrogen (H2) atmosphere. For the HDO of GUA at a mild reaction condition (10 bar initial H2 pressure and 300 °C) in the absence of solvent, the Cu-promoter enhanced the hydrogenation activity of the NiMo catalyst to convert GUA to phenol and methylphenols, one-atomic oxygen species. Whereas, the addition of Ce obviously inhibited the formation of coke on the catalyst surface after a long reaction period (6 h) and gave a higher GUA conversion level with increasing yield of phenols. For the HDO of real bio-oil obtained from the fast pyrolysis of cassava rhizome, the NiMo catalysts promoted by Cu or Ce at 4 wt% based on the γ-Al2O3 content showed a higher performance at eliminating the oxygenated compounds in the bio-oil, reducing the oxygen/carbon (O/C) molar ratio by over seven-fold from 1.75 to 0.24–0.25. Moreover, the gross heating value of the bio-oil was improved from 21.5 to ca. 29.0 MJ/kg after the HDO process. However, the addition of the Cu or Ce promoter did not inhibit coke deposition, possibly due to the acidic properties of the bio-oil that deteriorated the catalyst performance by metal leaching.
Applied Catalysis A ... arrow_drop_down Applied Catalysis A GeneralArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcata.2019.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Catalysis A ... arrow_drop_down Applied Catalysis A GeneralArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcata.2019.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Yunchao Li; Prasert Reubroycharoen; Chawalit Ngamcharussrivichai; Napida Hinchiranan; +3 AuthorsYunchao Li; Prasert Reubroycharoen; Chawalit Ngamcharussrivichai; Napida Hinchiranan; Sareena Mhadmhan; Shurong Wang; Prapan Kuchonthara;Abstract As an environmentally friendly and renewable alternative fuel, biomethane can be obtained from biogas upgrading; however, the commercial technologies for upgrading are currently an unsustainable global process by releasing CO2 into the atmosphere. Here, this research proposed a novel sustainable method for direct biogas upgrading to high-quality biomethane by catalytic CO2 methanation and focused on the performance improvement of Ni-based catalysts. Carbon nanotubes-silica fiber (CNT-SF) composite as a high-heat transfer fibrous support was successfully synthesized using the Ni/silica fiber (SF) catalyst as a core-fiber seeding structure in ethanol steam reforming. The Ni/CNT-SF catalyst was extensively characterized and investigated in the direct biogas upgrading by CO2 methanation. The results revealed that Ni/CNT-SF catalyst exhibited superior catalytic performance than the Ni/SF and conventional Ni/silica porous (SP) catalysts. This suggested that the Ni/CNT-SF catalyst easily accessed the reactant molecules and exhibited an enhanced metal-support interaction with smaller Ni crystalline size, leading to a higher dispersion of the Ni active site, enhancing the CO2 methanation. Furthermore, the addition of Mg (1–3%wt.) into the Ni/CNT-SF catalyst resulted in a stronger metal-support interaction and increased moderate basic sites, which could suppress the Ni sintering and promote the adsorption and activation of CO2. Under optimum conditions (350 °C, 10 bar, H2/CO2 molar ratio of 4, and GHSV of 24,000 mL⋅g−1⋅h−1), the Ni-2Mg/CNT-SF catalyst achieved the highest CO2 conversion, CH4 selectivity, producing high-quality biomethane with CH4 content at approximately 95%, without CH4 losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Supanut Phumpradit; Prasert Reubroycharoen; Prapan Kuchonthara; Chawalit Ngamcharussrivichai; +1 AuthorsSupanut Phumpradit; Prasert Reubroycharoen; Prapan Kuchonthara; Chawalit Ngamcharussrivichai; Napida Hinchiranan;Given the high accessibility of reactants to the active metal sites of fibrous catalysts, in this research, an electrospun silica fiber was applied as a support of nickel catalysts (Ni/SF) for the partial hydrogenation of palm oil fatty acid methyl ester (FAME) in a fixed-bed reactor. The textural properties, reducibility, Ni dispersion and morphology of Ni/SF catalysts were characterized and compared to those of a Ni/porous silica ball (Ni/SB). Under 1 bar H2 pressure at 140 °C, the 30 wt% Ni/SF catalyst exhibited a high turnover frequency (TOF) of 1396 h−1 to convert methyl linoleate (C18:2) to more saturated structures. On the other hand, the system using Ni/SB catalysts showed a TOF of only 141 h−1. This result was due to the effect of the higher acidity of the silica fiber, which promoted the higher adsorption of polyunsaturated portions in FAME. The non-porous characteristics and open morphology of the Ni/SF catalysts also allowed FAME and H2 molecules to easily access the Ni active sites deposited on the surface of the silica fiber and suppressed the selectivity to cis–trans isomerization. Stability testing of the Ni/SF catalyst showed that the C18:2 conversion decreased from 71% to 60% after long-term operation for 16 h possibly due to the weak metal–support interaction that facilitated Ni particle loss from the catalyst surface.
Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/9/993/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10090993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/9/993/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10090993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Nut Jantaraksa; Pattarapan Prasassarakich; Prasert Reubroycharoen; Napida Hinchiranan;Abstract Waste tires are attractive sources for alternative energy due to their long hydrocarbon chains with a high heating value. However, the condensed (volatile portion) pyrolysis oil derived from waste tires contains a relatively large level of sulfur compounds (1.15 wt%), which is not appropriate for use in combustion engines. Therefore, this research aimed to improve the waste tire pyrolysis oil (WTPO) via hydrodesulfurization (HDS) catalyzed by molybdenum (Mo), nickel–Mo (NiMo) or cobalt–Mo supported on alumina (γ-Al 2 O 3 ). The maximum % sulfur removal (87.8%) was achieved when the reaction was performed at 250 °C for 30 min using a 2 wt% NiMo/γ-Al 2 O 3 catalyst loading based on the WTPO content and 20 bar initial hydrogen pressure. The amount of sulfurous compounds in the waste tire pyrolysis oil was determined using gas chromatography spectroscopy equipped with a flame photometric detector (GC–FPD). The HDS of the WTPO was effective to reduce the sulfurous compounds, especially thiophene and its derivatives. The results from the simulated distillation gas chromatography (GC–SIMDIS) showed that the hydrodesulfurized WTPO (HDS-WTPO) was mainly composed of a light naphtha fraction (ca. 69%). The heating value of the HDS-WTPO (44 MJ/kg) was similar to those for commercial diesel (45 MJ/kg) and gasoline (gasohol) fuels (47 MJ/kg).
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV K. Klaigaew; K. Kangwansaichol; Prasert Reubroycharoen; P. Wattanapaphawong; Napida Hinchiranan; N. Khuhaudomlap; P. Kuchontara;AbstractRenewable fuels are major alternatives to fossil fuels. Biomass was considered as raw materials and renewable energy sources. Pyrolysis process is one of the efficient methods for converting biomass in bio-oil. This work investigates the pyrolysis of Giant Leucaena wood in liquid phase by various conditions: The experiments were conducted in an autoclave at following conditions; temperature of 325–400°C, holding time of 0–60min, biomass 250 gram, NiMo/Al2O3 catalyst weight (0–30 percent by weight) by using hexane as a solvent. Bio-oils were analyzed by gas chromatography–mass spectrometry to identify the structure and chemical compounds, also by CHN analyzer. The results showed that the liquid products were phenolic compounds, cyclic compounds and furans which were determined by gas chromatography.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Sasithorn Sunphorka; Napida Hinchiranan; Prapan Kuchonthara; Kunn Kangvansaichol; +1 AuthorsSasithorn Sunphorka; Napida Hinchiranan; Prapan Kuchonthara; Kunn Kangvansaichol; Keerati Prapaiwatcharapan;pmid: 25913031
This work investigated an influence of operating conditions on the biocrude yield and properties obtained from hydrothermal liquefaction (HTL) of Coelastrum sp. microalgae in a two-step sequential HTL (THTL) and a single-step HTL (SHTL) using a semi-continuous system. A higher biocrude yield with a lower nitrogen content was obtained with the THTL process than the SHTL one. The operating temperature, pressure and water flow rate were sequentially varied in a univariate analysis for a 2 h reaction time to optimize the obtained biocrude yield. Increasing the temperature improved the biocrude yield, but the second step temperature should not be higher than 320 °C to prevent the thermal cracking to gaseous compounds. The optimal conditions of THTL were preliminarily temperature of 200 and 320 °C and pressure of 7 and 20 MPa for the first and second step, respectively, both with a water flow rate of 0.50 mL/min.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.04.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.04.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV P. Narksri; S. Angnanon; J. Guntasub; K. Wijitrattanatri; S. Kingputtapong; S. Phumpradit; N. Hinchiranan;Abstract The extremely increasing amount of plastic waste due to the development of human society, economics and urbanization is an emergency task that must be urgently handled in order to reduce environmental problems. Although the plastic wastes can be converted to alternative liquid fuels through pyrolysis process, the compositions in the pyrolysis oil depended on the chemical structure of raw materials and pyrolysis condition affect its quality. Thus, this research aimed to comparatively investigate the production of alternative liquid fuels obtained from mixed plastics containing polystyrene (PS)/polyethylene terephthalate (PET)/polyethylene (PE)/polypropylene (PP) at 20/5/35/40 (w/w) via non-catalytic cracking (under N2 atmosphere), non-catalytic hydrocracking (under H2 atmosphere), and catalytic hydrocracking over 10 wt% Ni/SBA-15 catalyst conducted at an atmospheric pressure and 650 °C for 1 h. The product yields and chemical compositions (paraffins, olefins, aromatics and PAHs) in the liquid products generated from these processes were investigated and also compared to ones obtained from the non-catalytic processes of each plastic. Herein, the characteristics of 10 wt% Ni/SBA-15 catalyst was analyzed by N2-adsorption/desorption, X-ray diffraction (XRD), and H2-temperature programmed reduction (H2-TPR). The results indicated that the non-catalytic processes of PS provided the highest content of oil and wax product (ca. 92 wt%). Whereas, the non-catalytic hydrocracking of the mixed plastics gave the lowest one (ca. 69 wt%). However, the catalytic hydrocracking over 10 wt% Ni/SBA-15 catalyst (2.5 – 10.0 wt% based on the mixed plastics) could suppress the cracking and yielded the higher amount of oil and wax to ca. 76–80 wt%. To consider the chemical compositions in the liquid phase, the PAHs formation was relied on the aromatic structure in the feedstocks. The liquid product derived from the non-catalytic processes of PS contained the highest amount of PAHs compounds (2622–2926 ppm) followed by the mixed plastics. When the 10 wt% Ni/SBA-15 catalyst was applied to the catalytic hydrocracking of the mixed plastics, the amount of PAHs in the liquid product decreased from 1621 ppm to ca. 1000 ppm (30 – 40% PAHs reduction) without the reduction of heating value when compared to one obtained from the non-catalytic processes.
Materials Today Proc... arrow_drop_down Materials Today ProceedingsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2021.09.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Materials Today Proc... arrow_drop_down Materials Today ProceedingsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matpr.2021.09.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011Publisher:MDPI AG Authors: Phakakrong Trongkaew; Thanes Utistham; Prasert Reubroycharoen; Napida Hinchiranan;doi: 10.3390/en4111880
Waste tire pyrolysis oil has high potential to replace conventional fossil liquid fuels due to its high calorific heating value. However, the large amounts of sulfurous compounds in this oil hinders its application. Thus, the aim of this research was to investigate the possibility to apply the photo-assisted oxidation catalyzed by titanium dioxide (TiO2, Degussa P-25) to partially remove sulfurous compounds in the waste tire pyrolysis oil under milder reaction conditions without hydrogen consumption. A waste tire pyrolysis oil with 0.84% (w/w) of sulfurous content containing suspended TiO2 was irradiated by using a high-pressure mercury lamp for 7 h. The oxidized sulfur compounds were then migrated into the solvent-extraction phase. A maximum % sulfur removal of 43.6% was achieved when 7 g/L of TiO2 was loaded into a 1/4 (v/v) mixture of pyrolysis waste tire oil/acetonitrile at 50 °C in the presence of air. Chromatographic analysis confirmed that the photo-oxidized sulfurous compounds presented in the waste tire pyrolysis oil had higher polarity, which were readily dissolved and separated in distilled water. The properties of the photoxidized product were also reported and compared to those of crude oil.
Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/11/1880/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4111880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2011License: CC BYFull-Text: http://www.mdpi.com/1996-1073/4/11/1880/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en4111880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Keerati Prapaiwatcharapan; Prapan Kuchonthara; Napida Hinchiranan; Kunn Kangvansaichol; +1 AuthorsKeerati Prapaiwatcharapan; Prapan Kuchonthara; Napida Hinchiranan; Kunn Kangvansaichol; Sasithorn Sunphorka;We evaluated two-step hydrothermal liquefaction in a semi-continuous reactor for recovery of both nutri- ents and biocrude from the alga Coelastrum sp. in direct comparison with a one-step process. The influence of the operating temperature, pressure and water flow rate was investigated by means of a 2 k factorial experimental design and response surface methodology. The two-step process gave a higher total biocrude yield (~36 wt% (daf. basis)) and nutrient recovery level in terms of nitrogen containing compounds (~60 wt% of the protein content in the original algae as ammonium and nitrate ions and protein/polypeptides) than the single-step process. The highest biocrude yield was achieved at first-step temperature of 473 K, second-step temperature of 593 K, pressure of 200 bar and water flow rate of 0.5 mL/min.
Korean Journal of Ch... arrow_drop_down Korean Journal of Chemical EngineeringArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11814-014-0165-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Korean Journal of Ch... arrow_drop_down Korean Journal of Chemical EngineeringArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11814-014-0165-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Surachet Hongkailers; Supanut Phumpradit; Chanisara Phanpa; Adisak Pattiya; Chawalit Ngamcharussrivichai; Toshiyuki Yokoi; Napida Hinchiranan;Transformation of some oxygenated compounds in bio-oil derived from biomass pyrolysis via hydrodeoxygenation (HDO) generally improves its quality and potentially produces bio-based chemicals. Although alumina (Al₂O₃) supported catalysts are normally applied for HDO, they have certain limitations, such as acidity and high susceptibility to water, which need to be improved. In this research, an Al2O3-incorporated zirconia (ZrO2) composite (AZ) was prepared as a support of nickel (Ni)-molybdenum (Mo) catalysts used for HDO of guaiacol (GUA) and real bio-oil derived from pyrolysis of Leucaena leucocephala trunks to produce phenols. In the absence of water, the NiMo catalyst supported on AZ at 1/1 Al2O3/ZrO2 molar ratio [NiMo/AZ(1/1)] having higher reducibility with a greater number of weak-medium acid sites provided >98% GUA conversion with 87% selectivity to phenols. In the presence of water, the NiMo/AZ(1/1) catalyst maintained its catalytic activity, whereas NiMo/Al2O3 catalyst showed its deactivation to obtain the lowering GUA conversion (27.1% reduction). The FESEM and 27Al-NMR analyses revealed that the addition of ZrO2 improved the water tolerance of the catalyst by protecting the Al2O3 structure and preventing the transformation of Lewis acid-related tetrahedral Al to octahedral Al. Moreover, the NiMo/AZ(1/1) catalyst exhibited the highest HDO activity for real bio-oil without solvents, achieving a maximum oil yield of 25.2 wt% with 75.6% selectivity to phenols and the lowest coke formation.
Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2024.100858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2024.100858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Huiyan Zhang; Prapan Kuchonthara; Chanisara Phanpa; Prasert Reubroycharoen; Napida Hinchiranan; Patiphat Sangnikul; Tharapong Vitidsant; Rui Xiao; Adisak Pattiya;Abstract Effect of copper (Cu) or cerium (Ce) as promoters for nickel-molybdenum/γ-alumina (NiMo/γ-Al2O3) catalyst on the hydrodeoxygenation (HDO) of guaiacol (GUA), a model oxygenated compound found in a bio-oil derived from woody biomass, was comparatively investigated. The addition of Cu- or Ce-promoters affected the physicochemical properties of the NiMo catalyst. The NiMo catalyst promoted by Cu showed the higher reducibility, whilst the Ce-promoter (2–8 wt% based on γ-Al2O3 content) provided the NiMo catalyst with a higher distribution of active metals and induced a greater difficulty in the reduction under hydrogen (H2) atmosphere. For the HDO of GUA at a mild reaction condition (10 bar initial H2 pressure and 300 °C) in the absence of solvent, the Cu-promoter enhanced the hydrogenation activity of the NiMo catalyst to convert GUA to phenol and methylphenols, one-atomic oxygen species. Whereas, the addition of Ce obviously inhibited the formation of coke on the catalyst surface after a long reaction period (6 h) and gave a higher GUA conversion level with increasing yield of phenols. For the HDO of real bio-oil obtained from the fast pyrolysis of cassava rhizome, the NiMo catalysts promoted by Cu or Ce at 4 wt% based on the γ-Al2O3 content showed a higher performance at eliminating the oxygenated compounds in the bio-oil, reducing the oxygen/carbon (O/C) molar ratio by over seven-fold from 1.75 to 0.24–0.25. Moreover, the gross heating value of the bio-oil was improved from 21.5 to ca. 29.0 MJ/kg after the HDO process. However, the addition of the Cu or Ce promoter did not inhibit coke deposition, possibly due to the acidic properties of the bio-oil that deteriorated the catalyst performance by metal leaching.
Applied Catalysis A ... arrow_drop_down Applied Catalysis A GeneralArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcata.2019.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Catalysis A ... arrow_drop_down Applied Catalysis A GeneralArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcata.2019.02.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Yunchao Li; Prasert Reubroycharoen; Chawalit Ngamcharussrivichai; Napida Hinchiranan; +3 AuthorsYunchao Li; Prasert Reubroycharoen; Chawalit Ngamcharussrivichai; Napida Hinchiranan; Sareena Mhadmhan; Shurong Wang; Prapan Kuchonthara;Abstract As an environmentally friendly and renewable alternative fuel, biomethane can be obtained from biogas upgrading; however, the commercial technologies for upgrading are currently an unsustainable global process by releasing CO2 into the atmosphere. Here, this research proposed a novel sustainable method for direct biogas upgrading to high-quality biomethane by catalytic CO2 methanation and focused on the performance improvement of Ni-based catalysts. Carbon nanotubes-silica fiber (CNT-SF) composite as a high-heat transfer fibrous support was successfully synthesized using the Ni/silica fiber (SF) catalyst as a core-fiber seeding structure in ethanol steam reforming. The Ni/CNT-SF catalyst was extensively characterized and investigated in the direct biogas upgrading by CO2 methanation. The results revealed that Ni/CNT-SF catalyst exhibited superior catalytic performance than the Ni/SF and conventional Ni/silica porous (SP) catalysts. This suggested that the Ni/CNT-SF catalyst easily accessed the reactant molecules and exhibited an enhanced metal-support interaction with smaller Ni crystalline size, leading to a higher dispersion of the Ni active site, enhancing the CO2 methanation. Furthermore, the addition of Mg (1–3%wt.) into the Ni/CNT-SF catalyst resulted in a stronger metal-support interaction and increased moderate basic sites, which could suppress the Ni sintering and promote the adsorption and activation of CO2. Under optimum conditions (350 °C, 10 bar, H2/CO2 molar ratio of 4, and GHSV of 24,000 mL⋅g−1⋅h−1), the Ni-2Mg/CNT-SF catalyst achieved the highest CO2 conversion, CH4 selectivity, producing high-quality biomethane with CH4 content at approximately 95%, without CH4 losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Supanut Phumpradit; Prasert Reubroycharoen; Prapan Kuchonthara; Chawalit Ngamcharussrivichai; +1 AuthorsSupanut Phumpradit; Prasert Reubroycharoen; Prapan Kuchonthara; Chawalit Ngamcharussrivichai; Napida Hinchiranan;Given the high accessibility of reactants to the active metal sites of fibrous catalysts, in this research, an electrospun silica fiber was applied as a support of nickel catalysts (Ni/SF) for the partial hydrogenation of palm oil fatty acid methyl ester (FAME) in a fixed-bed reactor. The textural properties, reducibility, Ni dispersion and morphology of Ni/SF catalysts were characterized and compared to those of a Ni/porous silica ball (Ni/SB). Under 1 bar H2 pressure at 140 °C, the 30 wt% Ni/SF catalyst exhibited a high turnover frequency (TOF) of 1396 h−1 to convert methyl linoleate (C18:2) to more saturated structures. On the other hand, the system using Ni/SB catalysts showed a TOF of only 141 h−1. This result was due to the effect of the higher acidity of the silica fiber, which promoted the higher adsorption of polyunsaturated portions in FAME. The non-porous characteristics and open morphology of the Ni/SF catalysts also allowed FAME and H2 molecules to easily access the Ni active sites deposited on the surface of the silica fiber and suppressed the selectivity to cis–trans isomerization. Stability testing of the Ni/SF catalyst showed that the C18:2 conversion decreased from 71% to 60% after long-term operation for 16 h possibly due to the weak metal–support interaction that facilitated Ni particle loss from the catalyst surface.
Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/9/993/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10090993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/9/993/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10090993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu