- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2005 AustraliaPublisher:Elsevier BV Authors: Elizabeth A. Meier; Elizabeth A. Meier; ME Probert; Peter J. Thorburn;Substantial amounts of nitrogen (N) fertiliser are necessary for commercial sugarcane production because of the large biomass produced by sugarcane crops. Since this fertiliser is a substantial input cost and has implications if N is lost to the environment, there are pressing needs to optimise the supply of N to the crops' requirements. The complexity of the N cycle and the strong influence of climate, through its moderation of N transformation processes in the soil and its impact on N uptake by crops, make simulation-based approaches to this N management problem attractive. In this paper we describe the processes to be captured in modelling soil and plant N dynamics in sugarcane systems, and review the capability for modelling these processes. We then illustrate insights gained into improved management of N through simulation-based studies for the issues of crop residue management, irrigation management and greenhouse gas emissions. We conclude by identifying processes not currently represented in the models used for simulating N cycling in sugarcane production systems, and illustrate ways in which these can be partially overcome in the short term.
Field Crops Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2005.01.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Field Crops Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2005.01.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, France, France, United Kingdom, France, France, Italy, Australia, France, France, Switzerland, Germany, AustraliaPublisher:Wiley Funded by:EC | FACCE CSA, SNSF | Robust models for assessi...EC| FACCE CSA ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Renáta Sándor; Paul C. D. Newton; Ward Smith; Nuala Fitton; Brian Grant; Jean-François Soussana; Joël Léonard; Katja Klumpp; Lutz Merbold; Lutz Merbold; Stephanie K. Jones; Raia Silvia Massad; Luca Doro; Andrew D. Moore; Elizabeth A. Meier; Fiona Ehrhardt; Vasileios Myrgiotis; Russel McAuliffe; Bruno Basso; Sandro José Giacomini; Sylvie Recous; Matthew T. Harrison; Peter Grace; Massimiliano De Antoni Migliorati; Gianni Bellocchi; Patricia Laville; Raphaël Martin; Val Snow; Miko U. F. Kirschbaum; Arti Bhatia; Pete Smith; Lianhai Wu; Qing Zhang; Mark Lieffering; Joanna Sharp; Elizabeth Pattey; Lorenzo Brilli; Mark A. Liebig; Christopher D. Dorich; Jordi Doltra; Susanne Rolinski;AbstractSimulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi‐species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi‐model ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice and temperate grasslands. Using a multi‐stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process‐based biogeochemical models were assessed individually or as an ensemble against long‐term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E‐median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2O emissions. Yield‐scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three‐model ensembles across crop species and field sites. The potential of using process‐based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Australia, Australia, Hungary, Spain, HungaryPublisher:American Chemical Society (ACS) Funded by:UKRI | Dynamic monitoring, repor...UKRI| Dynamic monitoring, reporting and verification for implementing negative emission strategies in managed ecosystems (RETINA)Fabrizio Albanito; David McBey; Matthew Tom Harrison; Pete Smith; Fiona Ehrhardt; Arti Bhatia; Gianni Bellocchi; Lorenzo Brilli; Marco Carozzi; KM Christie; Jordi Doltra; Chris Dorich; Luca Doro; Peter Grace; Brian Grant; Joël Léonard; Mark A. Liebig; Cameron I. Ludemann; Raphaël Martin; Elizabeth A. Meier; Rachelle Meyer; Massimiliano De Antoni Migliorati; Vasileios Myrgiotis; Sylvie Recous; Renata Sándor; Val Snow; Jean‐François Soussana; Ward Smith; Nuala Fitton;On se rend de plus en plus compte que la complexité des études d'ensembles de modèles dépend non seulement des modèles utilisés, mais aussi de l'expérience et de l'approche utilisées par les modélisateurs pour calibrer et valider les résultats, qui restent une source d'incertitude. Ici, nous avons appliqué une méthode de prise de décision multicritères pour étudier la justification appliquée par les modélisateurs dans une étude d'ensemble de modèles où 12 types de modèles biogéochimiques différents basés sur des processus ont été comparés à travers cinq étapes d'étalonnage successives. Les modélisateurs partageaient un niveau d'accord commun sur l'importance des variables utilisées pour initialiser leurs modèles pour l'étalonnage. Cependant, nous avons constaté une incohérence entre les modélisateurs lors de l'évaluation de l'importance des variables d'entrée à travers différentes étapes d'étalonnage. Le niveau de pondération subjective attribué par les modélisateurs aux données d'étalonnage a diminué séquentiellement à mesure que l'étendue et le nombre de variables fournies augmentaient. Dans ce contexte, l'importance perçue attribuée à des variables telles que le taux de fertilisation, le régime d'irrigation, la texture du sol, le pH et les niveaux initiaux des stocks de carbone organique et d'azote du sol était statistiquement différente lorsqu'elle était classée selon les types de modèles. L'importance attribuée aux variables d'entrée telles que la durée expérimentale, la production primaire brute et l'échange net d'écosystèmes variait considérablement en fonction de la durée de l'expérience du modélisateur. Nous soutenons que l'accès progressif aux données d'entrée à travers les cinq étapes d'étalonnage a influencé négativement la cohérence des interprétations faites par les modélisateurs, avec un biais cognitif dans les routines d'étalonnage « essais et erreurs ». Notre étude souligne qu'il est essentiel de négliger les attributs humains et sociaux dans les résultats des études de modélisation et de comparaison des modèles. Bien que la complexité des processus capturés dans les algorithmes et le paramétrage du modèle soit importante, nous soutenons que (1) les hypothèses du modélisateur sur la mesure dans laquelle les paramètres doivent être modifiés et (2) les perceptions du modélisateur de l'importance des paramètres du modèle sont tout aussi essentielles pour obtenir un étalonnage du modèle de qualité que les détails numériques ou analytiques. Existe una creciente conciencia de que la complejidad de los estudios de conjuntos de modelos depende no solo de los modelos utilizados, sino también de la experiencia y el enfoque utilizados por los modeladores para calibrar y validar los resultados, que siguen siendo una fuente de incertidumbre. Aquí, aplicamos un método de toma de decisiones multicriterio para investigar la justificación aplicada por los modeladores en un estudio de conjunto de modelos donde se compararon 12 tipos de modelos biogeoquímicos diferentes basados en procesos en cinco etapas de calibración sucesivas. Los modeladores compartieron un nivel común de acuerdo sobre la importancia de las variables utilizadas para inicializar sus modelos para la calibración. Sin embargo, encontramos inconsistencia entre los modeladores al juzgar la importancia de las variables de entrada en diferentes etapas de calibración. El nivel de ponderación subjetiva atribuido por los modeladores a los datos de calibración disminuyó secuencialmente a medida que aumentaba el alcance y el número de variables proporcionadas. En este contexto, la importancia percibida atribuida a variables como la tasa de fertilización, el régimen de riego, la textura del suelo, el pH y los niveles iniciales de las reservas orgánicas de carbono y nitrógeno del suelo fue estadísticamente diferente cuando se clasificaron según los tipos de modelos. La importancia atribuida a variables de entrada como la duración experimental, la producción primaria bruta y el intercambio neto de ecosistemas varió significativamente según la duración de la experiencia del modelador. Argumentamos que el acceso gradual a los datos de entrada en las cinco etapas de calibración influyó negativamente en la consistencia de las interpretaciones realizadas por los modeladores, con sesgo cognitivo en las rutinas de calibración de "ensayo y error". Nuestro estudio destaca que pasar por alto los atributos humanos y sociales es fundamental en los resultados del modelado y los estudios de intercomparación de modelos. Si bien la complejidad de los procesos capturados en los algoritmos y la parametrización del modelo es importante, sostenemos que (1) las suposiciones del modelador sobre la medida en que se deben alterar los parámetros y (2) las percepciones del modelador sobre la importancia de los parámetros del modelo son tan críticas para obtener una calibración del modelo de calidad como los detalles numéricos o analíticos. There is a growing realization that the complexity of model ensemble studies depends not only on the models used but also on the experience and approach used by modelers to calibrate and validate results, which remain a source of uncertainty. Here, we applied a multi-criteria decision-making method to investigate the rationale applied by modelers in a model ensemble study where 12 process-based different biogeochemical model types were compared across five successive calibration stages. The modelers shared a common level of agreement about the importance of the variables used to initialize their models for calibration. However, we found inconsistency among modelers when judging the importance of input variables across different calibration stages. The level of subjective weighting attributed by modelers to calibration data decreased sequentially as the extent and number of variables provided increased. In this context, the perceived importance attributed to variables such as the fertilization rate, irrigation regime, soil texture, pH, and initial levels of soil organic carbon and nitrogen stocks was statistically different when classified according to model types. The importance attributed to input variables such as experimental duration, gross primary production, and net ecosystem exchange varied significantly according to the length of the modeler's experience. We argue that the gradual access to input data across the five calibration stages negatively influenced the consistency of the interpretations made by the modelers, with cognitive bias in "trial-and-error" calibration routines. Our study highlights that overlooking human and social attributes is critical in the outcomes of modeling and model intercomparison studies. While complexity of the processes captured in the model algorithms and parameterization is important, we contend that (1) the modeler's assumptions on the extent to which parameters should be altered and (2) modeler perceptions of the importance of model parameters are just as critical in obtaining a quality model calibration as numerical or analytical details. هناك إدراك متزايد بأن تعقيد دراسات مجموعة النماذج لا يعتمد فقط على النماذج المستخدمة ولكن أيضًا على الخبرة والنهج اللذين يستخدمهما المصممون لمعايرة النتائج والتحقق من صحتها، والتي لا تزال مصدرًا لعدم اليقين. هنا، طبقنا طريقة صنع قرار متعددة المعايير للتحقيق في الأساس المنطقي الذي طبقه مصممو النماذج في دراسة جماعية نموذجية حيث تمت مقارنة 12 نوعًا مختلفًا من النماذج البيوكيميائية القائمة على العمليات عبر خمس مراحل معايرة متتالية. شارك مصممو النماذج مستوى مشتركًا من الاتفاق حول أهمية المتغيرات المستخدمة لتهيئة نماذجهم للمعايرة. ومع ذلك، وجدنا عدم اتساق بين صانعي النماذج عند الحكم على أهمية متغيرات المدخلات عبر مراحل المعايرة المختلفة. انخفض مستوى الترجيح الذاتي الذي يعزوه صانعو النماذج إلى بيانات المعايرة بالتتابع مع زيادة مدى وعدد المتغيرات المقدمة. في هذا السياق، كانت الأهمية المتصورة المنسوبة إلى متغيرات مثل معدل التسميد ونظام الري وقوام التربة ودرجة الحموضة والمستويات الأولية لمخزونات الكربون العضوي والنيتروجين في التربة مختلفة إحصائيًا عند تصنيفها وفقًا لأنواع النماذج. اختلفت الأهمية المنسوبة إلى متغيرات المدخلات مثل المدة التجريبية، والإنتاج الأولي الإجمالي، وصافي تبادل النظام الإيكولوجي اختلافًا كبيرًا وفقًا لطول تجربة صانع النموذج. نحن نجادل بأن الوصول التدريجي إلى بيانات الإدخال عبر مراحل المعايرة الخمس أثر سلبًا على اتساق التفسيرات التي قدمها صانعو النماذج، مع التحيز المعرفي في إجراءات معايرة "التجربة والخطأ". تسلط دراستنا الضوء على أن التغاضي عن السمات البشرية والاجتماعية أمر بالغ الأهمية في نتائج النمذجة ودراسات المقارنة بين النماذج. في حين أن تعقيد العمليات التي تم التقاطها في خوارزميات النموذج ووضع المعلمات أمر مهم، فإننا نؤكد أن (1) افتراضات صانع النموذج حول مدى ضرورة تغيير المعلمات و (2) تصورات صانع النموذج لأهمية معلمات النموذج لا تقل أهمية في الحصول على معايرة نموذج الجودة عن التفاصيل العددية أو التحليلية.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, France, Canada, Finland, India, France, France, India, Canada, South AfricaPublisher:Wiley Falconnier, Gatien N.; Corbeels, Marc; Boote, Kenneth J.; Affholder, François; Adam, Myriam; MacCarthy, Dilys S.; Ruane, Alex C.; Nendel, Claas; Whitbread, Anthony M.; Justes, Éric; Ahuja, Lajpat R.; Akinseye, Folorunso M.; Alou, Isaac N.; Amouzou, Kokou A.; Anapalli, Saseendran S.; Baron, Christian; Basso, Bruno; Baudron, Frédéric; Bertuzzi, Patrick; Challinor, Andrew J.; Chen, Yi; Deryng, Delphine; Elsayed, Maha L.; Faye, Babacar; Gaiser, Thomas; Galdos, Marcelo; Gayler, Sebastian; Gerardeaux, Edward; Giner, Michel; Grant, Brian; Hoogenboom, Gerrit; Ibrahim, Esther S.; Kamali, Bahareh; Kersebaum, Kurt Christian; Kim, Soo‐Hyung; Laan, Michael; Leroux, Louise; Lizaso, Jon I.; Maestrini, Bernardo; Meier, Elizabeth A.; Mequanint, Fasil; Ndoli, Alain; Porter, Cheryl H.; Priesack, Eckart; Ripoche, Dominique; Sida, Tesfaye S.; Singh, Upendra; Smith, Ward N.; Srivastava, Amit; Sinha, Sumit; Tao, Fulu; Thorburn, Peter J.; Timlin, Dennis; Traore, Bouba; Twine, Tracy; Webber; Heidi;AbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2005 AustraliaPublisher:Elsevier BV Authors: Elizabeth A. Meier; Elizabeth A. Meier; ME Probert; Peter J. Thorburn;Substantial amounts of nitrogen (N) fertiliser are necessary for commercial sugarcane production because of the large biomass produced by sugarcane crops. Since this fertiliser is a substantial input cost and has implications if N is lost to the environment, there are pressing needs to optimise the supply of N to the crops' requirements. The complexity of the N cycle and the strong influence of climate, through its moderation of N transformation processes in the soil and its impact on N uptake by crops, make simulation-based approaches to this N management problem attractive. In this paper we describe the processes to be captured in modelling soil and plant N dynamics in sugarcane systems, and review the capability for modelling these processes. We then illustrate insights gained into improved management of N through simulation-based studies for the issues of crop residue management, irrigation management and greenhouse gas emissions. We conclude by identifying processes not currently represented in the models used for simulating N cycling in sugarcane production systems, and illustrate ways in which these can be partially overcome in the short term.
Field Crops Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2005.01.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Field Crops Research arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2005.01.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, France, France, United Kingdom, France, France, Italy, Australia, France, France, Switzerland, Germany, AustraliaPublisher:Wiley Funded by:EC | FACCE CSA, SNSF | Robust models for assessi...EC| FACCE CSA ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Renáta Sándor; Paul C. D. Newton; Ward Smith; Nuala Fitton; Brian Grant; Jean-François Soussana; Joël Léonard; Katja Klumpp; Lutz Merbold; Lutz Merbold; Stephanie K. Jones; Raia Silvia Massad; Luca Doro; Andrew D. Moore; Elizabeth A. Meier; Fiona Ehrhardt; Vasileios Myrgiotis; Russel McAuliffe; Bruno Basso; Sandro José Giacomini; Sylvie Recous; Matthew T. Harrison; Peter Grace; Massimiliano De Antoni Migliorati; Gianni Bellocchi; Patricia Laville; Raphaël Martin; Val Snow; Miko U. F. Kirschbaum; Arti Bhatia; Pete Smith; Lianhai Wu; Qing Zhang; Mark Lieffering; Joanna Sharp; Elizabeth Pattey; Lorenzo Brilli; Mark A. Liebig; Christopher D. Dorich; Jordi Doltra; Susanne Rolinski;AbstractSimulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi‐species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi‐model ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice and temperate grasslands. Using a multi‐stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process‐based biogeochemical models were assessed individually or as an ensemble against long‐term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E‐median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2O emissions. Yield‐scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three‐model ensembles across crop species and field sites. The potential of using process‐based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/92474Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, United Kingdom, Australia, Australia, Hungary, Spain, HungaryPublisher:American Chemical Society (ACS) Funded by:UKRI | Dynamic monitoring, repor...UKRI| Dynamic monitoring, reporting and verification for implementing negative emission strategies in managed ecosystems (RETINA)Fabrizio Albanito; David McBey; Matthew Tom Harrison; Pete Smith; Fiona Ehrhardt; Arti Bhatia; Gianni Bellocchi; Lorenzo Brilli; Marco Carozzi; KM Christie; Jordi Doltra; Chris Dorich; Luca Doro; Peter Grace; Brian Grant; Joël Léonard; Mark A. Liebig; Cameron I. Ludemann; Raphaël Martin; Elizabeth A. Meier; Rachelle Meyer; Massimiliano De Antoni Migliorati; Vasileios Myrgiotis; Sylvie Recous; Renata Sándor; Val Snow; Jean‐François Soussana; Ward Smith; Nuala Fitton;On se rend de plus en plus compte que la complexité des études d'ensembles de modèles dépend non seulement des modèles utilisés, mais aussi de l'expérience et de l'approche utilisées par les modélisateurs pour calibrer et valider les résultats, qui restent une source d'incertitude. Ici, nous avons appliqué une méthode de prise de décision multicritères pour étudier la justification appliquée par les modélisateurs dans une étude d'ensemble de modèles où 12 types de modèles biogéochimiques différents basés sur des processus ont été comparés à travers cinq étapes d'étalonnage successives. Les modélisateurs partageaient un niveau d'accord commun sur l'importance des variables utilisées pour initialiser leurs modèles pour l'étalonnage. Cependant, nous avons constaté une incohérence entre les modélisateurs lors de l'évaluation de l'importance des variables d'entrée à travers différentes étapes d'étalonnage. Le niveau de pondération subjective attribué par les modélisateurs aux données d'étalonnage a diminué séquentiellement à mesure que l'étendue et le nombre de variables fournies augmentaient. Dans ce contexte, l'importance perçue attribuée à des variables telles que le taux de fertilisation, le régime d'irrigation, la texture du sol, le pH et les niveaux initiaux des stocks de carbone organique et d'azote du sol était statistiquement différente lorsqu'elle était classée selon les types de modèles. L'importance attribuée aux variables d'entrée telles que la durée expérimentale, la production primaire brute et l'échange net d'écosystèmes variait considérablement en fonction de la durée de l'expérience du modélisateur. Nous soutenons que l'accès progressif aux données d'entrée à travers les cinq étapes d'étalonnage a influencé négativement la cohérence des interprétations faites par les modélisateurs, avec un biais cognitif dans les routines d'étalonnage « essais et erreurs ». Notre étude souligne qu'il est essentiel de négliger les attributs humains et sociaux dans les résultats des études de modélisation et de comparaison des modèles. Bien que la complexité des processus capturés dans les algorithmes et le paramétrage du modèle soit importante, nous soutenons que (1) les hypothèses du modélisateur sur la mesure dans laquelle les paramètres doivent être modifiés et (2) les perceptions du modélisateur de l'importance des paramètres du modèle sont tout aussi essentielles pour obtenir un étalonnage du modèle de qualité que les détails numériques ou analytiques. Existe una creciente conciencia de que la complejidad de los estudios de conjuntos de modelos depende no solo de los modelos utilizados, sino también de la experiencia y el enfoque utilizados por los modeladores para calibrar y validar los resultados, que siguen siendo una fuente de incertidumbre. Aquí, aplicamos un método de toma de decisiones multicriterio para investigar la justificación aplicada por los modeladores en un estudio de conjunto de modelos donde se compararon 12 tipos de modelos biogeoquímicos diferentes basados en procesos en cinco etapas de calibración sucesivas. Los modeladores compartieron un nivel común de acuerdo sobre la importancia de las variables utilizadas para inicializar sus modelos para la calibración. Sin embargo, encontramos inconsistencia entre los modeladores al juzgar la importancia de las variables de entrada en diferentes etapas de calibración. El nivel de ponderación subjetiva atribuido por los modeladores a los datos de calibración disminuyó secuencialmente a medida que aumentaba el alcance y el número de variables proporcionadas. En este contexto, la importancia percibida atribuida a variables como la tasa de fertilización, el régimen de riego, la textura del suelo, el pH y los niveles iniciales de las reservas orgánicas de carbono y nitrógeno del suelo fue estadísticamente diferente cuando se clasificaron según los tipos de modelos. La importancia atribuida a variables de entrada como la duración experimental, la producción primaria bruta y el intercambio neto de ecosistemas varió significativamente según la duración de la experiencia del modelador. Argumentamos que el acceso gradual a los datos de entrada en las cinco etapas de calibración influyó negativamente en la consistencia de las interpretaciones realizadas por los modeladores, con sesgo cognitivo en las rutinas de calibración de "ensayo y error". Nuestro estudio destaca que pasar por alto los atributos humanos y sociales es fundamental en los resultados del modelado y los estudios de intercomparación de modelos. Si bien la complejidad de los procesos capturados en los algoritmos y la parametrización del modelo es importante, sostenemos que (1) las suposiciones del modelador sobre la medida en que se deben alterar los parámetros y (2) las percepciones del modelador sobre la importancia de los parámetros del modelo son tan críticas para obtener una calibración del modelo de calidad como los detalles numéricos o analíticos. There is a growing realization that the complexity of model ensemble studies depends not only on the models used but also on the experience and approach used by modelers to calibrate and validate results, which remain a source of uncertainty. Here, we applied a multi-criteria decision-making method to investigate the rationale applied by modelers in a model ensemble study where 12 process-based different biogeochemical model types were compared across five successive calibration stages. The modelers shared a common level of agreement about the importance of the variables used to initialize their models for calibration. However, we found inconsistency among modelers when judging the importance of input variables across different calibration stages. The level of subjective weighting attributed by modelers to calibration data decreased sequentially as the extent and number of variables provided increased. In this context, the perceived importance attributed to variables such as the fertilization rate, irrigation regime, soil texture, pH, and initial levels of soil organic carbon and nitrogen stocks was statistically different when classified according to model types. The importance attributed to input variables such as experimental duration, gross primary production, and net ecosystem exchange varied significantly according to the length of the modeler's experience. We argue that the gradual access to input data across the five calibration stages negatively influenced the consistency of the interpretations made by the modelers, with cognitive bias in "trial-and-error" calibration routines. Our study highlights that overlooking human and social attributes is critical in the outcomes of modeling and model intercomparison studies. While complexity of the processes captured in the model algorithms and parameterization is important, we contend that (1) the modeler's assumptions on the extent to which parameters should be altered and (2) modeler perceptions of the importance of model parameters are just as critical in obtaining a quality model calibration as numerical or analytical details. هناك إدراك متزايد بأن تعقيد دراسات مجموعة النماذج لا يعتمد فقط على النماذج المستخدمة ولكن أيضًا على الخبرة والنهج اللذين يستخدمهما المصممون لمعايرة النتائج والتحقق من صحتها، والتي لا تزال مصدرًا لعدم اليقين. هنا، طبقنا طريقة صنع قرار متعددة المعايير للتحقيق في الأساس المنطقي الذي طبقه مصممو النماذج في دراسة جماعية نموذجية حيث تمت مقارنة 12 نوعًا مختلفًا من النماذج البيوكيميائية القائمة على العمليات عبر خمس مراحل معايرة متتالية. شارك مصممو النماذج مستوى مشتركًا من الاتفاق حول أهمية المتغيرات المستخدمة لتهيئة نماذجهم للمعايرة. ومع ذلك، وجدنا عدم اتساق بين صانعي النماذج عند الحكم على أهمية متغيرات المدخلات عبر مراحل المعايرة المختلفة. انخفض مستوى الترجيح الذاتي الذي يعزوه صانعو النماذج إلى بيانات المعايرة بالتتابع مع زيادة مدى وعدد المتغيرات المقدمة. في هذا السياق، كانت الأهمية المتصورة المنسوبة إلى متغيرات مثل معدل التسميد ونظام الري وقوام التربة ودرجة الحموضة والمستويات الأولية لمخزونات الكربون العضوي والنيتروجين في التربة مختلفة إحصائيًا عند تصنيفها وفقًا لأنواع النماذج. اختلفت الأهمية المنسوبة إلى متغيرات المدخلات مثل المدة التجريبية، والإنتاج الأولي الإجمالي، وصافي تبادل النظام الإيكولوجي اختلافًا كبيرًا وفقًا لطول تجربة صانع النموذج. نحن نجادل بأن الوصول التدريجي إلى بيانات الإدخال عبر مراحل المعايرة الخمس أثر سلبًا على اتساق التفسيرات التي قدمها صانعو النماذج، مع التحيز المعرفي في إجراءات معايرة "التجربة والخطأ". تسلط دراستنا الضوء على أن التغاضي عن السمات البشرية والاجتماعية أمر بالغ الأهمية في نتائج النمذجة ودراسات المقارنة بين النماذج. في حين أن تعقيد العمليات التي تم التقاطها في خوارزميات النموذج ووضع المعلمات أمر مهم، فإننا نؤكد أن (1) افتراضات صانع النموذج حول مدى ضرورة تغيير المعلمات و (2) تصورات صانع النموذج لأهمية معلمات النموذج لا تقل أهمية في الحصول على معايرة نموذج الجودة عن التفاصيل العددية أو التحليلية.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/320290Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19750Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c02023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, France, Canada, Finland, India, France, France, India, Canada, South AfricaPublisher:Wiley Falconnier, Gatien N.; Corbeels, Marc; Boote, Kenneth J.; Affholder, François; Adam, Myriam; MacCarthy, Dilys S.; Ruane, Alex C.; Nendel, Claas; Whitbread, Anthony M.; Justes, Éric; Ahuja, Lajpat R.; Akinseye, Folorunso M.; Alou, Isaac N.; Amouzou, Kokou A.; Anapalli, Saseendran S.; Baron, Christian; Basso, Bruno; Baudron, Frédéric; Bertuzzi, Patrick; Challinor, Andrew J.; Chen, Yi; Deryng, Delphine; Elsayed, Maha L.; Faye, Babacar; Gaiser, Thomas; Galdos, Marcelo; Gayler, Sebastian; Gerardeaux, Edward; Giner, Michel; Grant, Brian; Hoogenboom, Gerrit; Ibrahim, Esther S.; Kamali, Bahareh; Kersebaum, Kurt Christian; Kim, Soo‐Hyung; Laan, Michael; Leroux, Louise; Lizaso, Jon I.; Maestrini, Bernardo; Meier, Elizabeth A.; Mequanint, Fasil; Ndoli, Alain; Porter, Cheryl H.; Priesack, Eckart; Ripoche, Dominique; Sida, Tesfaye S.; Singh, Upendra; Smith, Ward N.; Srivastava, Amit; Sinha, Sumit; Tao, Fulu; Thorburn, Peter J.; Timlin, Dennis; Traore, Bouba; Twine, Tracy; Webber; Heidi;AbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)International Development Research Centre: IDRC Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu