- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:American Chemical Society (ACS) Funded by:EC | DROP-IT, EC | MARIEEC| DROP-IT ,EC| MARIEAuthors: Wiktor Żuraw; Felipe Andres Vinocour Pacheco; Jesús Sánchez-Diaz; Łukasz Przypis; +8 AuthorsWiktor Żuraw; Felipe Andres Vinocour Pacheco; Jesús Sánchez-Diaz; Łukasz Przypis; Mario Alejandro Mejia Escobar; Samy Almosni; Giovanni Vescio; Juan P. Martínez-Pastor; Blas Garrido; Robert Kudrawiec; Iván Mora-Seró; Senol Öz;For the first time, large-area, flexible organic-inorganic tin perovskite solar modules are fabricated by means of an industry-compatible and scalable blade-coating technique. An 8-cell interconnected mini module with dimensions of 25 cm2 (active area = 8 × 1.5 cm2) reached 5.7% power conversion efficiency under 1000 W/m2 (AM 1.5G) and 9.4% under 2000 lx (white-LED).
ACS Energy Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.3c02066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert ACS Energy Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.3c02066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Shyantan Dasgupta; Kasjan Misztal; Rosinda Fuentes Pineda; Wojciech Mróz; Łukasz Pawlaczyk; Jarosław Serafińczuk; Alex J. Barker; Taimoor Ahmad; Artur P. Herman; Sylvester Sahayaraj; Robert Kudrawiec; Annamaria Petrozza; Alina Dudkowiak; Konrad Wojciechowski;handle: 20.500.14243/424937
In the past decade, metal halide perovskites grew from a mere scientific sensation to a tangible photovoltaic technology, being on the brink of commercial entrance. Certified efficiency value reported for these devices exceeded 25%. However, there still remains a large scope for further advancement, particularly in better understanding of the formation process of polycrystalline thin films of these materials. Insight into the interplay between colloidal precursor solution and nucleation of perovskite crystallites is highly desirable to obtain well‐controlled crystallization process, essential for reproducible manufacturing at large scale. Herein, a novel synthetic route of methylammonium iodide (CH3NH3I, MAI) is reported, which produces ultrapure material with a cheap and simple method. MAI prepared this way obtains better control over the perovskite precursor colloidal solution. Furthermore, MAPbI3 perovskite layers processed from solutions are formulated with different MAI powders, and these films are applied into a simple planar heterojunction solar cell stack. Through photovoltaic performance characterization and multiple spectroscopic measurements, superior optoelectronic properties of samples made with an optimized solution are demonstrated. The influence of a precursor solution and its colloidal distribution on the final film properties is reported. The reported synthetic protocol is also applicable to other alkylammonium iodides.
IRIS Cnr arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:American Chemical Society (ACS) Funded by:EC | DROP-IT, EC | MARIEEC| DROP-IT ,EC| MARIEAuthors: Wiktor Żuraw; Felipe Andres Vinocour Pacheco; Jesús Sánchez-Diaz; Łukasz Przypis; +8 AuthorsWiktor Żuraw; Felipe Andres Vinocour Pacheco; Jesús Sánchez-Diaz; Łukasz Przypis; Mario Alejandro Mejia Escobar; Samy Almosni; Giovanni Vescio; Juan P. Martínez-Pastor; Blas Garrido; Robert Kudrawiec; Iván Mora-Seró; Senol Öz;For the first time, large-area, flexible organic-inorganic tin perovskite solar modules are fabricated by means of an industry-compatible and scalable blade-coating technique. An 8-cell interconnected mini module with dimensions of 25 cm2 (active area = 8 × 1.5 cm2) reached 5.7% power conversion efficiency under 1000 W/m2 (AM 1.5G) and 9.4% under 2000 lx (white-LED).
ACS Energy Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.3c02066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert ACS Energy Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.3c02066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Shyantan Dasgupta; Kasjan Misztal; Rosinda Fuentes Pineda; Wojciech Mróz; Łukasz Pawlaczyk; Jarosław Serafińczuk; Alex J. Barker; Taimoor Ahmad; Artur P. Herman; Sylvester Sahayaraj; Robert Kudrawiec; Annamaria Petrozza; Alina Dudkowiak; Konrad Wojciechowski;handle: 20.500.14243/424937
In the past decade, metal halide perovskites grew from a mere scientific sensation to a tangible photovoltaic technology, being on the brink of commercial entrance. Certified efficiency value reported for these devices exceeded 25%. However, there still remains a large scope for further advancement, particularly in better understanding of the formation process of polycrystalline thin films of these materials. Insight into the interplay between colloidal precursor solution and nucleation of perovskite crystallites is highly desirable to obtain well‐controlled crystallization process, essential for reproducible manufacturing at large scale. Herein, a novel synthetic route of methylammonium iodide (CH3NH3I, MAI) is reported, which produces ultrapure material with a cheap and simple method. MAI prepared this way obtains better control over the perovskite precursor colloidal solution. Furthermore, MAPbI3 perovskite layers processed from solutions are formulated with different MAI powders, and these films are applied into a simple planar heterojunction solar cell stack. Through photovoltaic performance characterization and multiple spectroscopic measurements, superior optoelectronic properties of samples made with an optimized solution are demonstrated. The influence of a precursor solution and its colloidal distribution on the final film properties is reported. The reported synthetic protocol is also applicable to other alkylammonium iodides.
IRIS Cnr arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu