- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Informa UK Limited Arshad; Pravesh Painkra; Nikkam Suresh; A. Yadav; Abhishek Sundaram; Ashish Kumar Raja;ABSTRACTThe high cost of the bridging liquid subdues the implementation and commercialization of oil agglomeration process. To overcome this problem, waste oils from different sectors were used in this present study. The performance of the process was assessed based on the responses like ash rejection and organic matter recovery. The aim of the present study was to investigate the usage of waste oils from different sectors and to optimize and analyze the behavioral pattern showcased by different variables (pulp density, oil dosage, agglomeration time and oil type) using response surface methodology (Box-Behnken design). Experimental investigation shows that the optimum pulp density, oil dosage, agglomeration time and oil type condition obtained as 3%, 15%, 15 min and waste engine oil, respectively. At optimum condition, the % ash rejection and % organic matter recovery obtained as 63.94% and 81.8%, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01932691.2017.1414610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01932691.2017.1414610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Informa UK Limited Arshad; Pravesh Painkra; Nikkam Suresh; A. Yadav; Abhishek Sundaram; Ashish Kumar Raja;ABSTRACTThe high cost of the bridging liquid subdues the implementation and commercialization of oil agglomeration process. To overcome this problem, waste oils from different sectors were used in this present study. The performance of the process was assessed based on the responses like ash rejection and organic matter recovery. The aim of the present study was to investigate the usage of waste oils from different sectors and to optimize and analyze the behavioral pattern showcased by different variables (pulp density, oil dosage, agglomeration time and oil type) using response surface methodology (Box-Behnken design). Experimental investigation shows that the optimum pulp density, oil dosage, agglomeration time and oil type condition obtained as 3%, 15%, 15 min and waste engine oil, respectively. At optimum condition, the % ash rejection and % organic matter recovery obtained as 63.94% and 81.8%, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01932691.2017.1414610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01932691.2017.1414610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Informa UK Limited Swapan Suman; Anand Mohan Yadav; Awani Bhushan; Lokavarapu Bhaskara Rao; Dilip Kumar Rajak;To meet the global demand for energy, biochar can be a substitute and a green source of energy for fossil fuels and their derivatives. Biochar has its own supremacy to meet the requirements of the energy sector and replace coking coal for metallurgical purposes, and the mitigation of CO2 emissions from the Iron and Steel industry. This study includes the characterisation and comparative study of the reduction of iron ore pellets and iron ore fines using saw dust char (SDC) as one of the biomass wastes. The results show that the reduction of iron ore fines with comparable ratios with SDC gives the maximum degree of reduction than that of iron ore pellets. Thus, SDC can play an important role in the premium quality of coking coal reserves.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14786451.2022.2110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14786451.2022.2110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Informa UK Limited Swapan Suman; Anand Mohan Yadav; Awani Bhushan; Lokavarapu Bhaskara Rao; Dilip Kumar Rajak;To meet the global demand for energy, biochar can be a substitute and a green source of energy for fossil fuels and their derivatives. Biochar has its own supremacy to meet the requirements of the energy sector and replace coking coal for metallurgical purposes, and the mitigation of CO2 emissions from the Iron and Steel industry. This study includes the characterisation and comparative study of the reduction of iron ore pellets and iron ore fines using saw dust char (SDC) as one of the biomass wastes. The results show that the reduction of iron ore fines with comparable ratios with SDC gives the maximum degree of reduction than that of iron ore pellets. Thus, SDC can play an important role in the premium quality of coking coal reserves.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14786451.2022.2110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14786451.2022.2110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Informa UK Limited Authors: Nikkam Suresh; A. Yadav;ABSTRACTIn this study, a three-level and five-variable Box-Behnken design combined with response surface methodology (RSM) was used to develop an approach to analyze the behavior of different variables of oil agglomeration where pulp density, oil dosage, agglomeration time, particle size, and oil type were varied. The response of coal–oil agglomeration to this variation was investigated using the Box-Behnken design. The efficiency of this process was evaluated by calculating percent ash rejection (%AR) and percent organic-matter recovery (%OMR). The optimal conditions established were pulp density (3%), oil dosage (15%), agglomeration time (15 min), and particle size (0.15 µm) using linseed oil with a predicted %AR and %OMR as 66.02% and 95.93%, respectively, with a desirability of 94.20%. The optimal condition was experimentally validated as 64.60% for ash rejection and 93.94% for organic-matter recovery. The coefficient of determination (R2) was found to be .870 and .926 for %AR and %OMR, respectively.
International Journa... arrow_drop_down International Journal of Coal Preparation and UtilizationArticle . 2016 . Peer-reviewedData sources: CrossrefInternational Journal of Coal Preparation and UtilizationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19392699.2016.1224237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal Preparation and UtilizationArticle . 2016 . Peer-reviewedData sources: CrossrefInternational Journal of Coal Preparation and UtilizationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19392699.2016.1224237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Informa UK Limited Authors: Nikkam Suresh; A. Yadav;ABSTRACTIn this study, a three-level and five-variable Box-Behnken design combined with response surface methodology (RSM) was used to develop an approach to analyze the behavior of different variables of oil agglomeration where pulp density, oil dosage, agglomeration time, particle size, and oil type were varied. The response of coal–oil agglomeration to this variation was investigated using the Box-Behnken design. The efficiency of this process was evaluated by calculating percent ash rejection (%AR) and percent organic-matter recovery (%OMR). The optimal conditions established were pulp density (3%), oil dosage (15%), agglomeration time (15 min), and particle size (0.15 µm) using linseed oil with a predicted %AR and %OMR as 66.02% and 95.93%, respectively, with a desirability of 94.20%. The optimal condition was experimentally validated as 64.60% for ash rejection and 93.94% for organic-matter recovery. The coefficient of determination (R2) was found to be .870 and .926 for %AR and %OMR, respectively.
International Journa... arrow_drop_down International Journal of Coal Preparation and UtilizationArticle . 2016 . Peer-reviewedData sources: CrossrefInternational Journal of Coal Preparation and UtilizationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19392699.2016.1224237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal Preparation and UtilizationArticle . 2016 . Peer-reviewedData sources: CrossrefInternational Journal of Coal Preparation and UtilizationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19392699.2016.1224237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Informa UK Limited Arshad; Pravesh Painkra; Nikkam Suresh; A. Yadav; Abhishek Sundaram; Ashish Kumar Raja;ABSTRACTThe high cost of the bridging liquid subdues the implementation and commercialization of oil agglomeration process. To overcome this problem, waste oils from different sectors were used in this present study. The performance of the process was assessed based on the responses like ash rejection and organic matter recovery. The aim of the present study was to investigate the usage of waste oils from different sectors and to optimize and analyze the behavioral pattern showcased by different variables (pulp density, oil dosage, agglomeration time and oil type) using response surface methodology (Box-Behnken design). Experimental investigation shows that the optimum pulp density, oil dosage, agglomeration time and oil type condition obtained as 3%, 15%, 15 min and waste engine oil, respectively. At optimum condition, the % ash rejection and % organic matter recovery obtained as 63.94% and 81.8%, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01932691.2017.1414610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01932691.2017.1414610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Informa UK Limited Arshad; Pravesh Painkra; Nikkam Suresh; A. Yadav; Abhishek Sundaram; Ashish Kumar Raja;ABSTRACTThe high cost of the bridging liquid subdues the implementation and commercialization of oil agglomeration process. To overcome this problem, waste oils from different sectors were used in this present study. The performance of the process was assessed based on the responses like ash rejection and organic matter recovery. The aim of the present study was to investigate the usage of waste oils from different sectors and to optimize and analyze the behavioral pattern showcased by different variables (pulp density, oil dosage, agglomeration time and oil type) using response surface methodology (Box-Behnken design). Experimental investigation shows that the optimum pulp density, oil dosage, agglomeration time and oil type condition obtained as 3%, 15%, 15 min and waste engine oil, respectively. At optimum condition, the % ash rejection and % organic matter recovery obtained as 63.94% and 81.8%, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01932691.2017.1414610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/01932691.2017.1414610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Informa UK Limited Swapan Suman; Anand Mohan Yadav; Awani Bhushan; Lokavarapu Bhaskara Rao; Dilip Kumar Rajak;To meet the global demand for energy, biochar can be a substitute and a green source of energy for fossil fuels and their derivatives. Biochar has its own supremacy to meet the requirements of the energy sector and replace coking coal for metallurgical purposes, and the mitigation of CO2 emissions from the Iron and Steel industry. This study includes the characterisation and comparative study of the reduction of iron ore pellets and iron ore fines using saw dust char (SDC) as one of the biomass wastes. The results show that the reduction of iron ore fines with comparable ratios with SDC gives the maximum degree of reduction than that of iron ore pellets. Thus, SDC can play an important role in the premium quality of coking coal reserves.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14786451.2022.2110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14786451.2022.2110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Informa UK Limited Swapan Suman; Anand Mohan Yadav; Awani Bhushan; Lokavarapu Bhaskara Rao; Dilip Kumar Rajak;To meet the global demand for energy, biochar can be a substitute and a green source of energy for fossil fuels and their derivatives. Biochar has its own supremacy to meet the requirements of the energy sector and replace coking coal for metallurgical purposes, and the mitigation of CO2 emissions from the Iron and Steel industry. This study includes the characterisation and comparative study of the reduction of iron ore pellets and iron ore fines using saw dust char (SDC) as one of the biomass wastes. The results show that the reduction of iron ore fines with comparable ratios with SDC gives the maximum degree of reduction than that of iron ore pellets. Thus, SDC can play an important role in the premium quality of coking coal reserves.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14786451.2022.2110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14786451.2022.2110100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Informa UK Limited Authors: Nikkam Suresh; A. Yadav;ABSTRACTIn this study, a three-level and five-variable Box-Behnken design combined with response surface methodology (RSM) was used to develop an approach to analyze the behavior of different variables of oil agglomeration where pulp density, oil dosage, agglomeration time, particle size, and oil type were varied. The response of coal–oil agglomeration to this variation was investigated using the Box-Behnken design. The efficiency of this process was evaluated by calculating percent ash rejection (%AR) and percent organic-matter recovery (%OMR). The optimal conditions established were pulp density (3%), oil dosage (15%), agglomeration time (15 min), and particle size (0.15 µm) using linseed oil with a predicted %AR and %OMR as 66.02% and 95.93%, respectively, with a desirability of 94.20%. The optimal condition was experimentally validated as 64.60% for ash rejection and 93.94% for organic-matter recovery. The coefficient of determination (R2) was found to be .870 and .926 for %AR and %OMR, respectively.
International Journa... arrow_drop_down International Journal of Coal Preparation and UtilizationArticle . 2016 . Peer-reviewedData sources: CrossrefInternational Journal of Coal Preparation and UtilizationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19392699.2016.1224237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal Preparation and UtilizationArticle . 2016 . Peer-reviewedData sources: CrossrefInternational Journal of Coal Preparation and UtilizationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19392699.2016.1224237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Informa UK Limited Authors: Nikkam Suresh; A. Yadav;ABSTRACTIn this study, a three-level and five-variable Box-Behnken design combined with response surface methodology (RSM) was used to develop an approach to analyze the behavior of different variables of oil agglomeration where pulp density, oil dosage, agglomeration time, particle size, and oil type were varied. The response of coal–oil agglomeration to this variation was investigated using the Box-Behnken design. The efficiency of this process was evaluated by calculating percent ash rejection (%AR) and percent organic-matter recovery (%OMR). The optimal conditions established were pulp density (3%), oil dosage (15%), agglomeration time (15 min), and particle size (0.15 µm) using linseed oil with a predicted %AR and %OMR as 66.02% and 95.93%, respectively, with a desirability of 94.20%. The optimal condition was experimentally validated as 64.60% for ash rejection and 93.94% for organic-matter recovery. The coefficient of determination (R2) was found to be .870 and .926 for %AR and %OMR, respectively.
International Journa... arrow_drop_down International Journal of Coal Preparation and UtilizationArticle . 2016 . Peer-reviewedData sources: CrossrefInternational Journal of Coal Preparation and UtilizationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19392699.2016.1224237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal Preparation and UtilizationArticle . 2016 . Peer-reviewedData sources: CrossrefInternational Journal of Coal Preparation and UtilizationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/19392699.2016.1224237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu