- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Beibei Xu; Diyi Chen; Edoardo Patelli; Haijun Shen; Jae-Hyun Park;Conversion efficiency and unit vibration are two important indexes in evaluating the stability of hydraulic generating systems (HGSs). Most of related studies have been carried out in the deterministic theory framework. As running times of HGS increased, understanding uncertainties and limitations of model parameters are important for accurate modeling and stability evaluation. In this study, first, we establish an integrated model of a HGS by proposing unbalanced hydraulic forces based on the Kutta-Zhoukowski assumption. Second, global sensitivity and parametric interactions for conversion efficiency and unit vibration are investigated based on this model. Finally, the novel unified model is verified with two conventional models. This integrated and accurate mathematical model is a major advance in the diagnosis and prediction of failures in hydropower operation.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Beibei Xu; Diyi Chen; Edoardo Patelli; Haijun Shen; Jae-Hyun Park;Conversion efficiency and unit vibration are two important indexes in evaluating the stability of hydraulic generating systems (HGSs). Most of related studies have been carried out in the deterministic theory framework. As running times of HGS increased, understanding uncertainties and limitations of model parameters are important for accurate modeling and stability evaluation. In this study, first, we establish an integrated model of a HGS by proposing unbalanced hydraulic forces based on the Kutta-Zhoukowski assumption. Second, global sensitivity and parametric interactions for conversion efficiency and unit vibration are investigated based on this model. Finally, the novel unified model is verified with two conventional models. This integrated and accurate mathematical model is a major advance in the diagnosis and prediction of failures in hydropower operation.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.09.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu