- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Nishant Jha; Deepak Prashar; Osamah Ibrahim Khalaf; Youseef Alotaibi; Abdulmajeed Alsufyani; Saleh Alghamdi;doi: 10.3390/su13168921
Conventional crop insurance systems are complex and often not economically feasible. Farmers are often reluctant to be covered for their crops due to lack of trust in insurance firms and the fear of delayed or non-payment of claims. In this paper, a blockchain based crop insurance solution is suggested. The solution suggested in this paper is an affordable, efficient, low cost crop insurance solution which will ensure many farmers are insured and benefiting from timely crop insurance. Currently the cost of administering insurance is an essential barrier to accessing this facility. With the proper use of blockchain based on ethereum this expense can be reduced dramatically. We have conducted various tests on platforms such as Google Cloud and found that the least throughput is 165 transactions. Upon analysis we have found that the time taken by the block formation is directly proportional to the timing of processing. The end-to-end average latency of the system was achieved as 31.2 s, which was quite effective for the infrastructure what we are using. Upon conducting acceptance testing, we found that the system suggested in the paper is effective and we are planning to release the application on open source platforms for future improvements.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/8921/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/8921/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mamoon Rashid; Nishant Jha; Deepak Prashar; Sachin Kumar Gupta; R. K. Saket;Abstract Load forecasting plays an essential role in effective energy planning and distribution in a smart grid. However, due to the unpredictable and non-linear structure of smart grids and large datasets' complex nature, accurate load forecasting is still challenging. Statistical techniques are being used for a long time for load forecasting, but it is inefficient. This paper tries to resolve challenges imposed by conventional methods like mean and mode by suggesting an ANN model for accurate load forecasting. Specifically, the LSTM and random forest approach has been used here. We compared our model to other models that use similar parameters and found that ours is more reliable and can be used for long-term forecasting. Our model has achieved an average overall accuracy of 96% and an average MSE of 4.486 with average CPU time consumption of 904.47 s, 872.43 s, and 908.32 s, respectively. Hence, the present model outperforms other existing methods.
Computers & Electric... arrow_drop_down Computers & Electrical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compeleceng.2021.107479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Computers & Electric... arrow_drop_down Computers & Electrical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compeleceng.2021.107479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Finland, FinlandPublisher:Institution of Engineering and Technology (IET) Kawoosa, Asif Iqbal; Prashar, Deepak; Faheem, Muhammad; Jha, Nishant; Khan; Arfat Ahmad;AbstractElectricity theft is a primary concern for utility providers, as it leads to substantial financial losses. To address the issue, a novel extreme gradient boosting (XGBoost)‐based model utilizing the consumers’ electricity consumption patterns for analysis is proposed for electricity theft detection (ETD). To remove the imbalance in the real‐world electricity consumption dataset and ensure an even distribution of theft and non‐theft data instances, six different artificially created theft attacks were used. Moreover, the utilization of the XGBoost algorithm for classification, especially to identify malicious instances of electricity theft, yielded commendable accuracy rates and a minimal occurrence of false positives. The proposed model identifies electricity theft specific to the regions, utilizing electricity consumption parameters, and other variables as input features. The authors’ model outperformed existing benchmarks like k‐neural networks, light gradient boost, random forest, support vector machine, decision tree, and AdaBoost. The simulation results using the false attacks for balancing the dataset have improved the proposed model's performance, achieving a precision, recall, and F1‐score of 96%, 95%, and 95%, respectively. The results of the detection rate and the false positive rate (FPR) of the proposed XGBoost‐based detection model have achieved 96% and 3%, respectively.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYFull-Text: https://doi.org/10.1049/gtd2.12997Data sources: Bielefeld Academic Search Engine (BASE)IET Generation, Transmission & DistributionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/gtd2.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold Published in a Diamond OA journal 30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYFull-Text: https://doi.org/10.1049/gtd2.12997Data sources: Bielefeld Academic Search Engine (BASE)IET Generation, Transmission & DistributionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/gtd2.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Deepak Prashar; Nishant Jha; Sudan Jha; Yongju Lee; Gyanendra Prasad Joshi;doi: 10.3390/su12083497
The globalization of the food supply chain industry has significantly emerged today. Due to this, farm-to-fork food safety and quality certification have become very important. Increasing threats to food security and contamination have led to the enormous need for a revolutionary traceability system, an important mechanism for quality control that ensures sufficient food supply chain product safety. In this work, we proposed a blockchain-based solution that removes the need for a secure centralized structure, intermediaries, and exchanges of information, optimizes performance, and complies with a strong level of safety and integrity. Our approach completely relies on the use of smart contracts to monitor and manage all communications and transactions within the supply chain network among all of the stakeholders. Our approach verifies all of the transactions, which are recorded and stored in a centralized interplanetary file system database. It allows a secure and cost-effective supply chain system for the stakeholders. Thus, our proposed model gives a transparent, accurate, and traceable supply chain system. The proposed solution shows a throughput of 161 transactions per second with a convergence time of 4.82 s, and was found effective in the traceability of the agricultural products.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3497/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 146 citations 146 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3497/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Nishant Jha; Deepak Prashar; Osamah Ibrahim Khalaf; Youseef Alotaibi; Abdulmajeed Alsufyani; Saleh Alghamdi;doi: 10.3390/su13168921
Conventional crop insurance systems are complex and often not economically feasible. Farmers are often reluctant to be covered for their crops due to lack of trust in insurance firms and the fear of delayed or non-payment of claims. In this paper, a blockchain based crop insurance solution is suggested. The solution suggested in this paper is an affordable, efficient, low cost crop insurance solution which will ensure many farmers are insured and benefiting from timely crop insurance. Currently the cost of administering insurance is an essential barrier to accessing this facility. With the proper use of blockchain based on ethereum this expense can be reduced dramatically. We have conducted various tests on platforms such as Google Cloud and found that the least throughput is 165 transactions. Upon analysis we have found that the time taken by the block formation is directly proportional to the timing of processing. The end-to-end average latency of the system was achieved as 31.2 s, which was quite effective for the infrastructure what we are using. Upon conducting acceptance testing, we found that the system suggested in the paper is effective and we are planning to release the application on open source platforms for future improvements.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/8921/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/8921/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mamoon Rashid; Nishant Jha; Deepak Prashar; Sachin Kumar Gupta; R. K. Saket;Abstract Load forecasting plays an essential role in effective energy planning and distribution in a smart grid. However, due to the unpredictable and non-linear structure of smart grids and large datasets' complex nature, accurate load forecasting is still challenging. Statistical techniques are being used for a long time for load forecasting, but it is inefficient. This paper tries to resolve challenges imposed by conventional methods like mean and mode by suggesting an ANN model for accurate load forecasting. Specifically, the LSTM and random forest approach has been used here. We compared our model to other models that use similar parameters and found that ours is more reliable and can be used for long-term forecasting. Our model has achieved an average overall accuracy of 96% and an average MSE of 4.486 with average CPU time consumption of 904.47 s, 872.43 s, and 908.32 s, respectively. Hence, the present model outperforms other existing methods.
Computers & Electric... arrow_drop_down Computers & Electrical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compeleceng.2021.107479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Computers & Electric... arrow_drop_down Computers & Electrical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compeleceng.2021.107479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Finland, FinlandPublisher:Institution of Engineering and Technology (IET) Kawoosa, Asif Iqbal; Prashar, Deepak; Faheem, Muhammad; Jha, Nishant; Khan; Arfat Ahmad;AbstractElectricity theft is a primary concern for utility providers, as it leads to substantial financial losses. To address the issue, a novel extreme gradient boosting (XGBoost)‐based model utilizing the consumers’ electricity consumption patterns for analysis is proposed for electricity theft detection (ETD). To remove the imbalance in the real‐world electricity consumption dataset and ensure an even distribution of theft and non‐theft data instances, six different artificially created theft attacks were used. Moreover, the utilization of the XGBoost algorithm for classification, especially to identify malicious instances of electricity theft, yielded commendable accuracy rates and a minimal occurrence of false positives. The proposed model identifies electricity theft specific to the regions, utilizing electricity consumption parameters, and other variables as input features. The authors’ model outperformed existing benchmarks like k‐neural networks, light gradient boost, random forest, support vector machine, decision tree, and AdaBoost. The simulation results using the false attacks for balancing the dataset have improved the proposed model's performance, achieving a precision, recall, and F1‐score of 96%, 95%, and 95%, respectively. The results of the detection rate and the false positive rate (FPR) of the proposed XGBoost‐based detection model have achieved 96% and 3%, respectively.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYFull-Text: https://doi.org/10.1049/gtd2.12997Data sources: Bielefeld Academic Search Engine (BASE)IET Generation, Transmission & DistributionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/gtd2.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold Published in a Diamond OA journal 30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYFull-Text: https://doi.org/10.1049/gtd2.12997Data sources: Bielefeld Academic Search Engine (BASE)IET Generation, Transmission & DistributionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/gtd2.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Deepak Prashar; Nishant Jha; Sudan Jha; Yongju Lee; Gyanendra Prasad Joshi;doi: 10.3390/su12083497
The globalization of the food supply chain industry has significantly emerged today. Due to this, farm-to-fork food safety and quality certification have become very important. Increasing threats to food security and contamination have led to the enormous need for a revolutionary traceability system, an important mechanism for quality control that ensures sufficient food supply chain product safety. In this work, we proposed a blockchain-based solution that removes the need for a secure centralized structure, intermediaries, and exchanges of information, optimizes performance, and complies with a strong level of safety and integrity. Our approach completely relies on the use of smart contracts to monitor and manage all communications and transactions within the supply chain network among all of the stakeholders. Our approach verifies all of the transactions, which are recorded and stored in a centralized interplanetary file system database. It allows a secure and cost-effective supply chain system for the stakeholders. Thus, our proposed model gives a transparent, accurate, and traceable supply chain system. The proposed solution shows a throughput of 161 transactions per second with a convergence time of 4.82 s, and was found effective in the traceability of the agricultural products.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3497/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 146 citations 146 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/8/3497/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu