Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jelena Ankuda; Diana Sivojienė; Kęstutis Armolaitis; Audrius Jakutis; +7 Authors

    To help solve the actual problem of global climate warming, it is important to comprehensively study soil organic carbon (SOC), soil fungi, and other parameters at different depths in the soil. This study was aimed at investigating the chemical and microbiological parameters and their interactions at various soil depths (0–5 to 195–200 cm) in an Arenosol in a Scots pine stand in southwestern Lithuania, with a focus on the main groups of fungi and their influence on SOC. The highest diversity of soil fungi species was found at a depth of 50–55 cm. Saprotrophs were dominant at all investigated soil depths. Ectomycorrhizal fungi were mostly abundant at depths of up to 50–55 cm. The C:N ratio gradually decreased down to 50–55 cm, then increased in deeper soil layers (from 50–55 to 195–200 cm). This means that the most active mineralization processes occur at depths of between 0 and 55 cm. Carbon stabilization processes occur at depths of 100–105 to 195–200 cm, and most of this carbon does not enter the atmosphere nor contribute to the process of climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diversityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Diversity
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Diversity
    Article . 2024
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diversityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Diversity
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Diversity
      Article . 2024
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tedersoo, Leho; Mikryukov, Vladimir; Zizka, Alexander; Bahram, Mohammad; +105 Authors

    This repository contains the data associated with the paper Tedersoo et al. (2022) Global patterns in endemicity and vulnerability of soil fungi // Global Change Biology. DOI:10.1111/gcb.16398 Fungi are highly diverse organisms and provide a wealth of ecosystem functions. However, distribution patterns and conservation needs of fungi have been very little explored compared to charismatic animals and plants. Here we assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. Endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are vulnerable mostly to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We suggest that there should be more attention focused on the conservation of fungi, especially tropical root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi, unicellular early-diverging groups and macrofungi in general. Given the low overlap between endemicity of fungi and macroorganisms, but high matching in conservation needs, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms in general. This repository contains the following data associated with the publication: Supplementary tables S1 - S6 (`Tables_S1-S6.xlsx`): - Table S1. Definition of ecoregions and assignment of samples to ecoregions - Table S2. GSMc dataset used for endemicity analyses - Table S3. Dataset used for modeling endemicity values - Table S4. Dataset used for calculating and mapping vulnerability scores - Table S5. Dataset used for calculating and mapping conservation value - Table S6. Additional funding sources by authors OTU distribution by samples and ecoregions (`Data_taxon_assignment_to ecoregions.xlsx`) Gridded maps: Conservation priorities for all fungi and fungal groups - ConservationPriority_AllFungi.tif - ConservationPriority_AM.tif - ConservationPriority_EcM.tif - ConservationPriority_Moulds.tif - ConservationPriority_NonEcMAgaricomycetes.tif - ConservationPriority_OHPs.tif - ConservationPriority_Pathogens.tif - ConservationPriority_Unicellular.tif - ConservationPriority_Yeasts.tif The average vulnerability of all fungi and fungal groups and the model uncertainty estimates - AverageVulnerability_AllFungi.tif - AverageVulnerability_AM.tif - AverageVulnerability_EcM.tif - AverageVulnerability_Moulds.tif - AverageVulnerability_NonEcMAgaricomycetes.tif - AverageVulnerability_OHPs.tif - AverageVulnerability_Pathogens.tif - AverageVulnerabilityUncertainty_AllFungi.tif - AverageVulnerabilityUncertainty_AM.tif - AverageVulnerabilityUncertainty_EcM.tif - AverageVulnerabilityUncertainty_Moulds.tif - AverageVulnerabilityUncertainty_NonEcMAgaricomycetes.tif - AverageVulnerabilityUncertainty_OHPs.tif - AverageVulnerabilityUncertainty_Pathogens.tif - AverageVulnerabilityUncertainty_Unicellular.tif - AverageVulnerabilityUncertainty_Yeasts.tif - AverageVulnerability_Unicellular.tif - AverageVulnerability_Yeasts.tif The relative importance of predicted vulnerability of all fungi - RelativeImportanceOfVulnerability_AllFungi.tif Vulnerability to drought, heat, and land cover change for all fungi - Vulnerability_AllFungi_Heat-Drought-LandCoverChange.tif - VulnerabilityUncertainty_AllFungi_Heat-Drought-LandCoverChange.tif Human footprint index based on the Land-Use Harmonisation (LUH2; Hurtt et al., 2020, doi:10.5194/gmd-13-5425-2020) - `LandCoverChange_1960-2015.tif` MD5 checksums for all files (`MD5.md5`) Fungal groups: - AM, arbuscular mycorrhizal fungi (including all Glomeromycota but excluding all Endogonomycetes) - EcM, ectomycorrhizal fungi (excluding dubious lineages) - NonEcMAgaricomycetes, non-EcM Agaricomycetes (mostly saprotrophic fungi with usually macroscopic fruiting bodies) - Moulds (including Mortierellales, Mucorales, Umbelopsidales and Aspergillaceae and Trichocomaceae of Eurotiales and Trichoderma of Hypocreales) - Putative pathogens (including plant, animal and fungal pathogens as primary or secondary lifestyles) - OHPs, opportunistic human parasites (excluding Mortierellales) - Yeasts (excluding dimorphic yeasts) - Unicellular, other unicellular (non-yeast) fungi (including chytrids, aphids, rozellids and other early-diverging fungal lineages) Detailed processing steps can be found here: https://github.com/Mycology-Microbiology-Center/Fungal_Endemicity_and_Vulnerability This repository contains the data associated with the paper Tedersoo et al. (2022) Global patterns in endemicity and vulnerability of soil fungi // Global Change Biology. DOI:10.1111/gcb.16398 Fungi are highly diverse organisms and provide a wealth of ecosystem functions. However, distribution patterns and conservation needs of fungi have been very little explored compared to charismatic animals and plants. Here we assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. Endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are vulnerable mostly to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We suggest that there should be more attention focused on the conservation of fungi, especially tropical root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi, unicellular early-diverging groups and macrofungi in general. Given the low overlap between endemicity of fungi and macroorganisms, but high matching in conservation needs, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms in general.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research@WUR
    Dataset . 2022
    Data sources: Research@WUR
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research@WUR
      Dataset . 2022
      Data sources: Research@WUR
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jelena Ankuda; Diana Sivojienė; Kęstutis Armolaitis; Audrius Jakutis; +7 Authors

    To help solve the actual problem of global climate warming, it is important to comprehensively study soil organic carbon (SOC), soil fungi, and other parameters at different depths in the soil. This study was aimed at investigating the chemical and microbiological parameters and their interactions at various soil depths (0–5 to 195–200 cm) in an Arenosol in a Scots pine stand in southwestern Lithuania, with a focus on the main groups of fungi and their influence on SOC. The highest diversity of soil fungi species was found at a depth of 50–55 cm. Saprotrophs were dominant at all investigated soil depths. Ectomycorrhizal fungi were mostly abundant at depths of up to 50–55 cm. The C:N ratio gradually decreased down to 50–55 cm, then increased in deeper soil layers (from 50–55 to 195–200 cm). This means that the most active mineralization processes occur at depths of between 0 and 55 cm. Carbon stabilization processes occur at depths of 100–105 to 195–200 cm, and most of this carbon does not enter the atmosphere nor contribute to the process of climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diversityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Diversity
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Diversity
    Article . 2024
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diversityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Diversity
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Diversity
      Article . 2024
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tedersoo, Leho; Mikryukov, Vladimir; Zizka, Alexander; Bahram, Mohammad; +105 Authors

    This repository contains the data associated with the paper Tedersoo et al. (2022) Global patterns in endemicity and vulnerability of soil fungi // Global Change Biology. DOI:10.1111/gcb.16398 Fungi are highly diverse organisms and provide a wealth of ecosystem functions. However, distribution patterns and conservation needs of fungi have been very little explored compared to charismatic animals and plants. Here we assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. Endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are vulnerable mostly to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We suggest that there should be more attention focused on the conservation of fungi, especially tropical root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi, unicellular early-diverging groups and macrofungi in general. Given the low overlap between endemicity of fungi and macroorganisms, but high matching in conservation needs, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms in general. This repository contains the following data associated with the publication: Supplementary tables S1 - S6 (`Tables_S1-S6.xlsx`): - Table S1. Definition of ecoregions and assignment of samples to ecoregions - Table S2. GSMc dataset used for endemicity analyses - Table S3. Dataset used for modeling endemicity values - Table S4. Dataset used for calculating and mapping vulnerability scores - Table S5. Dataset used for calculating and mapping conservation value - Table S6. Additional funding sources by authors OTU distribution by samples and ecoregions (`Data_taxon_assignment_to ecoregions.xlsx`) Gridded maps: Conservation priorities for all fungi and fungal groups - ConservationPriority_AllFungi.tif - ConservationPriority_AM.tif - ConservationPriority_EcM.tif - ConservationPriority_Moulds.tif - ConservationPriority_NonEcMAgaricomycetes.tif - ConservationPriority_OHPs.tif - ConservationPriority_Pathogens.tif - ConservationPriority_Unicellular.tif - ConservationPriority_Yeasts.tif The average vulnerability of all fungi and fungal groups and the model uncertainty estimates - AverageVulnerability_AllFungi.tif - AverageVulnerability_AM.tif - AverageVulnerability_EcM.tif - AverageVulnerability_Moulds.tif - AverageVulnerability_NonEcMAgaricomycetes.tif - AverageVulnerability_OHPs.tif - AverageVulnerability_Pathogens.tif - AverageVulnerabilityUncertainty_AllFungi.tif - AverageVulnerabilityUncertainty_AM.tif - AverageVulnerabilityUncertainty_EcM.tif - AverageVulnerabilityUncertainty_Moulds.tif - AverageVulnerabilityUncertainty_NonEcMAgaricomycetes.tif - AverageVulnerabilityUncertainty_OHPs.tif - AverageVulnerabilityUncertainty_Pathogens.tif - AverageVulnerabilityUncertainty_Unicellular.tif - AverageVulnerabilityUncertainty_Yeasts.tif - AverageVulnerability_Unicellular.tif - AverageVulnerability_Yeasts.tif The relative importance of predicted vulnerability of all fungi - RelativeImportanceOfVulnerability_AllFungi.tif Vulnerability to drought, heat, and land cover change for all fungi - Vulnerability_AllFungi_Heat-Drought-LandCoverChange.tif - VulnerabilityUncertainty_AllFungi_Heat-Drought-LandCoverChange.tif Human footprint index based on the Land-Use Harmonisation (LUH2; Hurtt et al., 2020, doi:10.5194/gmd-13-5425-2020) - `LandCoverChange_1960-2015.tif` MD5 checksums for all files (`MD5.md5`) Fungal groups: - AM, arbuscular mycorrhizal fungi (including all Glomeromycota but excluding all Endogonomycetes) - EcM, ectomycorrhizal fungi (excluding dubious lineages) - NonEcMAgaricomycetes, non-EcM Agaricomycetes (mostly saprotrophic fungi with usually macroscopic fruiting bodies) - Moulds (including Mortierellales, Mucorales, Umbelopsidales and Aspergillaceae and Trichocomaceae of Eurotiales and Trichoderma of Hypocreales) - Putative pathogens (including plant, animal and fungal pathogens as primary or secondary lifestyles) - OHPs, opportunistic human parasites (excluding Mortierellales) - Yeasts (excluding dimorphic yeasts) - Unicellular, other unicellular (non-yeast) fungi (including chytrids, aphids, rozellids and other early-diverging fungal lineages) Detailed processing steps can be found here: https://github.com/Mycology-Microbiology-Center/Fungal_Endemicity_and_Vulnerability This repository contains the data associated with the paper Tedersoo et al. (2022) Global patterns in endemicity and vulnerability of soil fungi // Global Change Biology. DOI:10.1111/gcb.16398 Fungi are highly diverse organisms and provide a wealth of ecosystem functions. However, distribution patterns and conservation needs of fungi have been very little explored compared to charismatic animals and plants. Here we assess endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. Endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are vulnerable mostly to drought, heat and land cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests and woodlands. We suggest that there should be more attention focused on the conservation of fungi, especially tropical root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi, unicellular early-diverging groups and macrofungi in general. Given the low overlap between endemicity of fungi and macroorganisms, but high matching in conservation needs, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms in general.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Research@WUR
    Dataset . 2022
    Data sources: Research@WUR
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Research@WUR
      Dataset . 2022
      Data sources: Research@WUR
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph