- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Rodrigues, Marcos; Cunill Camprubí, Àngel; Balaguer-Romano, Rodrigo; Coco Megía, Celso J.; +4 AuthorsRodrigues, Marcos; Cunill Camprubí, Àngel; Balaguer-Romano, Rodrigo; Coco Megía, Celso J.; Castañares, Francisco; Ruffault, Julien; Fernandes, Paulo M.; Resco de Dios, Víctor;pmid: 36410479
Wildfire is a common phenomenon in Mediterranean countries but the 2022 fire season has been extreme in southwest Europe (Portugal, Spain and France). Here we provide a preliminary but comprehensive analysis of 2022's wildfire season in southwest Europe. Burned area has exceeded the 2001-2021 median by a factor of 52 in some regions and large wildfires (>500 ha) started to occur in June-July, earlier than the traditional fire season. These anomalies were associated with record-breaking values of fuel dryness, atmospheric water demand and pyrometeorological conditions. Live fuel moisture content was below the historical minima for almost 50 % of the season in some regions. A few large wildfires were responsible for 82 % of the burned area and, in turn, 47 % of the area burned occurred in protected areas. Shrublands, transitional woodlands and conifer forests (but not eucalypt plantations) were the land cover types most affected by extreme fires. As climate change intensifies, we can expect such fire seasons to become the new normal in large parts of the continent, potentially leading to major negative impacts on rural economies. These results highlight the need for landscape level fuel management also in protected areas, to avoid fire-induced biodiversity losses and landscape scale degradation. Our results have important policy implications and indicate that fire prevention should be explicitly addressed within continental forest legislation and strategies.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.160320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.160320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022Publisher:MDPI AG Authors: Rodrigo Balaguer-Romano; Ruben Diaz-Sierra; Victor Resco de Dios;The monitoring of live and dead fuels’ moisture content (LFMC and DFMC) dynamics plays a crucial role in wildfire management and prevention. In this study, we estimate LFMC and DFMC across the 21st century, considering the meteorological conditions derived from medium- and high-greenhouse gas emission scenarios (Representative Concentration Pathway scenarios 4.5 and 8.5) by selecting a representative subset of global and regional climate model combinations. A stable atmospheric CO2 concentration was also considered to assess possible CO2 mitigation effects. We applied semi-mechanistic models to infer moisture content dynamics across 36 study sites located in peninsular Spain, which corresponds to the monospecific stands of twelve tree species. Overall, our results indicate that both live and dead fuels’ moisture content dynamics will experience generalized declining trends in the coming decades. Furthermore, increases in the number of days per year when these fuels’ moisture content falls below wildfire occurrence thresholds will extend the lengths of fire seasons. Moreover, we observe a significant CO2 mitigation effect, although it is not enough to offset the declining trends in LFMC induced by climate change. Finally, the results suggest that, in ecosystems where plant biomass is abundant enough to sustain a fire, the moisture content of live fuels will be the main limiting factor for the occurrence of future large wildfires.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/iecf20...Conference object . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/iecf2022-13121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/iecf20...Conference object . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/iecf2022-13121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Juan Martínez de Aragón; Javier Hedo; Rubén Díaz-Sierra; Matthias M. Boer; José Antonio Bonet; Prakash Thapa; Àngel Cunill Camprubí; Edurne Martínez del Castillo; Rodrigo Balaguer-Romano; Marta Yebra; Víctor Resco de Dios; Víctor Resco de Dios;Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively. We observed significant spatial variation in live (78-162%) and dead (10-15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|-|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006-2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the "safety margin" for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.
Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Rodrigues, Marcos; Cunill Camprubí, Àngel; Balaguer-Romano, Rodrigo; Coco Megía, Celso J.; +4 AuthorsRodrigues, Marcos; Cunill Camprubí, Àngel; Balaguer-Romano, Rodrigo; Coco Megía, Celso J.; Castañares, Francisco; Ruffault, Julien; Fernandes, Paulo M.; Resco de Dios, Víctor;pmid: 36410479
Wildfire is a common phenomenon in Mediterranean countries but the 2022 fire season has been extreme in southwest Europe (Portugal, Spain and France). Here we provide a preliminary but comprehensive analysis of 2022's wildfire season in southwest Europe. Burned area has exceeded the 2001-2021 median by a factor of 52 in some regions and large wildfires (>500 ha) started to occur in June-July, earlier than the traditional fire season. These anomalies were associated with record-breaking values of fuel dryness, atmospheric water demand and pyrometeorological conditions. Live fuel moisture content was below the historical minima for almost 50 % of the season in some regions. A few large wildfires were responsible for 82 % of the burned area and, in turn, 47 % of the area burned occurred in protected areas. Shrublands, transitional woodlands and conifer forests (but not eucalypt plantations) were the land cover types most affected by extreme fires. As climate change intensifies, we can expect such fire seasons to become the new normal in large parts of the continent, potentially leading to major negative impacts on rural economies. These results highlight the need for landscape level fuel management also in protected areas, to avoid fire-induced biodiversity losses and landscape scale degradation. Our results have important policy implications and indicate that fire prevention should be explicitly addressed within continental forest legislation and strategies.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.160320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.160320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022Publisher:MDPI AG Authors: Rodrigo Balaguer-Romano; Ruben Diaz-Sierra; Victor Resco de Dios;The monitoring of live and dead fuels’ moisture content (LFMC and DFMC) dynamics plays a crucial role in wildfire management and prevention. In this study, we estimate LFMC and DFMC across the 21st century, considering the meteorological conditions derived from medium- and high-greenhouse gas emission scenarios (Representative Concentration Pathway scenarios 4.5 and 8.5) by selecting a representative subset of global and regional climate model combinations. A stable atmospheric CO2 concentration was also considered to assess possible CO2 mitigation effects. We applied semi-mechanistic models to infer moisture content dynamics across 36 study sites located in peninsular Spain, which corresponds to the monospecific stands of twelve tree species. Overall, our results indicate that both live and dead fuels’ moisture content dynamics will experience generalized declining trends in the coming decades. Furthermore, increases in the number of days per year when these fuels’ moisture content falls below wildfire occurrence thresholds will extend the lengths of fire seasons. Moreover, we observe a significant CO2 mitigation effect, although it is not enough to offset the declining trends in LFMC induced by climate change. Finally, the results suggest that, in ecosystems where plant biomass is abundant enough to sustain a fire, the moisture content of live fuels will be the main limiting factor for the occurrence of future large wildfires.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/iecf20...Conference object . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/iecf2022-13121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/iecf20...Conference object . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/iecf2022-13121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Juan Martínez de Aragón; Javier Hedo; Rubén Díaz-Sierra; Matthias M. Boer; José Antonio Bonet; Prakash Thapa; Àngel Cunill Camprubí; Edurne Martínez del Castillo; Rodrigo Balaguer-Romano; Marta Yebra; Víctor Resco de Dios; Víctor Resco de Dios;Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively. We observed significant spatial variation in live (78-162%) and dead (10-15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|-|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006-2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the "safety margin" for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.
Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu