- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 New Zealand, Australia, Spain, New Zealand, Spain, Malaysia, MalaysiaPublisher:Copernicus GmbH Funded by:ARC | Methane uptake of forest ..., ARC | MEGA - Mobile Ecosystem G..., ARC | Discovery Projects - Gran... +3 projectsARC| Methane uptake of forest soils ,ARC| MEGA - Mobile Ecosystem Gas-exchange Analyser for Australian landscapes ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Future Fellowships - Grant ID: FT110100602 ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to regionJason Beringer; Lindsay B. Hutley; Ian McHugh; Stefan K. Arndt; David I. Campbell; Helen Cleugh; James Cleverly; Víctor Resco de Dios; Derek Eamus; Bradley J. Evans; Cäcilia Ewenz; Peter R. Grace; Anne Griebel; Vanessa Haverd; Nina Hinko‐Najera; Alfredo Huete; Peter Isaac; Kasturi Devi Kanniah; R. Leuning; Michael J. Liddell; Craig Macfarlane; Wayne S. Meyer; Caitlin E. Moore; Elise Pendall; Alison Phillips; R. Phillips; Suzanne M. Prober; Natalia Restrepo‐Coupé; Susanna Rutledge-Jonker; Ivan Schroder; Richard Silberstein; Patricia Southall; Mei Sun Yee; Nigel Tapper; Eva van Gorsel; Camilla Vote; Jeffrey P. Walker; Tim Wardlaw;handle: 2328/36758 , 2440/106693 , 11343/121939 , 10289/10935
Abstract. OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m−2 yr−1) and the natural raised peat bog site having a very low GPP (820 gC m−2 yr−1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.
Flinders Academic Co... arrow_drop_down Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/36758Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2403Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.5194/bg-13-5895-2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/10289/10935Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaThe University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5895-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu186 citations 186 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flinders Academic Co... arrow_drop_down Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/36758Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2403Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.5194/bg-13-5895-2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/10289/10935Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaThe University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5895-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 New Zealand, Australia, Spain, New Zealand, Spain, Malaysia, MalaysiaPublisher:Copernicus GmbH Funded by:ARC | Methane uptake of forest ..., ARC | MEGA - Mobile Ecosystem G..., ARC | Discovery Projects - Gran... +3 projectsARC| Methane uptake of forest soils ,ARC| MEGA - Mobile Ecosystem Gas-exchange Analyser for Australian landscapes ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Future Fellowships - Grant ID: FT110100602 ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to regionJason Beringer; Lindsay B. Hutley; Ian McHugh; Stefan K. Arndt; David I. Campbell; Helen Cleugh; James Cleverly; Víctor Resco de Dios; Derek Eamus; Bradley J. Evans; Cäcilia Ewenz; Peter R. Grace; Anne Griebel; Vanessa Haverd; Nina Hinko‐Najera; Alfredo Huete; Peter Isaac; Kasturi Devi Kanniah; R. Leuning; Michael J. Liddell; Craig Macfarlane; Wayne S. Meyer; Caitlin E. Moore; Elise Pendall; Alison Phillips; R. Phillips; Suzanne M. Prober; Natalia Restrepo‐Coupé; Susanna Rutledge-Jonker; Ivan Schroder; Richard Silberstein; Patricia Southall; Mei Sun Yee; Nigel Tapper; Eva van Gorsel; Camilla Vote; Jeffrey P. Walker; Tim Wardlaw;handle: 2328/36758 , 2440/106693 , 11343/121939 , 10289/10935
Abstract. OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m−2 yr−1) and the natural raised peat bog site having a very low GPP (820 gC m−2 yr−1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.
Flinders Academic Co... arrow_drop_down Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/36758Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2403Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.5194/bg-13-5895-2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/10289/10935Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaThe University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5895-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu186 citations 186 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flinders Academic Co... arrow_drop_down Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/36758Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2403Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.5194/bg-13-5895-2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/10289/10935Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaThe University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5895-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:Public Library of Science (PLoS) Dailiang Peng; Chaoyang Wu; Bing Zhang; Alfredo Huete; Xiaoyang Zhang; Rui Sun; Liping Lei; Wenjing Huang; Liangyun Liu; Xinjie Liu; Jun Li; Shezhou Luo; Bin Fang;Terrestrial ecosystems greatly contribute to carbon (C) emission reduction targets through photosynthetic C uptake.Net primary production (NPP) represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP) zone accounts for more than 40% of China’s landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC) on inter-annual changes of TNSP zone for 2001–2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI) and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05). The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA) to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2016Full-Text: https://doi.org/10.7916/D8TM7B82Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0158173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2016Full-Text: https://doi.org/10.7916/D8TM7B82Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0158173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:Public Library of Science (PLoS) Dailiang Peng; Chaoyang Wu; Bing Zhang; Alfredo Huete; Xiaoyang Zhang; Rui Sun; Liping Lei; Wenjing Huang; Liangyun Liu; Xinjie Liu; Jun Li; Shezhou Luo; Bin Fang;Terrestrial ecosystems greatly contribute to carbon (C) emission reduction targets through photosynthetic C uptake.Net primary production (NPP) represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP) zone accounts for more than 40% of China’s landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC) on inter-annual changes of TNSP zone for 2001–2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI) and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05). The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA) to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2016Full-Text: https://doi.org/10.7916/D8TM7B82Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0158173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2016Full-Text: https://doi.org/10.7916/D8TM7B82Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0158173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Alfredo Huete;doi: 10.1038/nature17301
pmid: 26886792
Satellite data have allowed scientists to generate a quantitative model to assess the response rates of different ecosystems to climate variability. The index provides a tool for comparing regional sensitivity and resilience. See Letter p.229 A key question in climate change research is how to identify the ecosystems most sensitive to climate variation. This study uses MODIS satellite data collected between February 2000 and December 2013 to develop a new metric, the 'vegetation sensitivity index', which measures ecosystem response to external forcing of three key climate variables — air temperature, water availability and cloud cover. The index can be used to identify the resilience status of ecosystems at high spatial resolution on a global scale. Areas of amplified sensitivity to climate variability are evident in Arctic tundra, boreal and tropical rainforest, alpine regions, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Alfredo Huete;doi: 10.1038/nature17301
pmid: 26886792
Satellite data have allowed scientists to generate a quantitative model to assess the response rates of different ecosystems to climate variability. The index provides a tool for comparing regional sensitivity and resilience. See Letter p.229 A key question in climate change research is how to identify the ecosystems most sensitive to climate variation. This study uses MODIS satellite data collected between February 2000 and December 2013 to develop a new metric, the 'vegetation sensitivity index', which measures ecosystem response to external forcing of three key climate variables — air temperature, water availability and cloud cover. The index can be used to identify the resilience status of ecosystems at high spatial resolution on a global scale. Areas of amplified sensitivity to climate variability are evident in Arctic tundra, boreal and tropical rainforest, alpine regions, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BrazilPublisher:American Association for the Advancement of Science (AAAS) Authors: Hideki Kobayashi; N. Prohaska; Kenia Teodoro Wiedemann; Kenia Teodoro Wiedemann; +22 AuthorsHideki Kobayashi; N. Prohaska; Kenia Teodoro Wiedemann; Kenia Teodoro Wiedemann; Scott R. Saleska; Bradley O. Christoffersen; Bradley O. Christoffersen; Rodrigo Dda Silva; Maurício Lamano Ferreira; Bruce Walker Nelson; Matthew N. Hayek; Scott C. Stark; Alfredo Huete; Loren P. Albert; Aline Pontes Lopes; Paulo M. Brando; Suelen Marostica; Travis E. Huxman; Kleber Silva Campos; Julia Valentim Tavares; Jin Wu; Natalia Restrepo-Coupe; Natalia Restrepo-Coupe; Dennis G. Dye; Kaiyu Guan; Kaiyu Guan;pmid: 26917771
Leaf seasonality in Amazon forests Models assume that lower precipitation in tropical forests means less plant-available water and less photosynthesis. Direct measurements in the Amazon, however, show that production remains constant or increases in the dry season. To investigate this mismatch, Wu et al. use tower-based cameras to detect the phenology (i.e., the seasonal patterns) of leaf dynamics in tropical tree crowns in Amazonia, Brazil, and relate this to patterns of CO 2 flux. Accounting for age-dependent variation among individual leaves and crowns is necessary for understanding the seasonal dynamics of photosynthesis in the entire ecosystem. Leaf phenology regulates seasonality of the carbon flux in tropical forests across a gradient of climate zones. Science , this issue p. 972
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aad5068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 370 citations 370 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aad5068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BrazilPublisher:American Association for the Advancement of Science (AAAS) Authors: Hideki Kobayashi; N. Prohaska; Kenia Teodoro Wiedemann; Kenia Teodoro Wiedemann; +22 AuthorsHideki Kobayashi; N. Prohaska; Kenia Teodoro Wiedemann; Kenia Teodoro Wiedemann; Scott R. Saleska; Bradley O. Christoffersen; Bradley O. Christoffersen; Rodrigo Dda Silva; Maurício Lamano Ferreira; Bruce Walker Nelson; Matthew N. Hayek; Scott C. Stark; Alfredo Huete; Loren P. Albert; Aline Pontes Lopes; Paulo M. Brando; Suelen Marostica; Travis E. Huxman; Kleber Silva Campos; Julia Valentim Tavares; Jin Wu; Natalia Restrepo-Coupe; Natalia Restrepo-Coupe; Dennis G. Dye; Kaiyu Guan; Kaiyu Guan;pmid: 26917771
Leaf seasonality in Amazon forests Models assume that lower precipitation in tropical forests means less plant-available water and less photosynthesis. Direct measurements in the Amazon, however, show that production remains constant or increases in the dry season. To investigate this mismatch, Wu et al. use tower-based cameras to detect the phenology (i.e., the seasonal patterns) of leaf dynamics in tropical tree crowns in Amazonia, Brazil, and relate this to patterns of CO 2 flux. Accounting for age-dependent variation among individual leaves and crowns is necessary for understanding the seasonal dynamics of photosynthesis in the entire ecosystem. Leaf phenology regulates seasonality of the carbon flux in tropical forests across a gradient of climate zones. Science , this issue p. 972
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aad5068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 370 citations 370 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aad5068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Niwat Bhumiphan; Jurawan Nontapon; Siwa Kaewplang; Neti Srihanu; Werapong Koedsin; Alfredo Huete;doi: 10.3390/su15097223
Rubber is a perennial plant grown to produce natural rubber. It is a raw material for industrial and non-industrial products important to the world economy. The sustainability of natural rubber production is, therefore, critical for smallholder livelihoods and economic development. To maintain price stability, it is important to estimate the yields in advance. Remote sensing technology can effectively provide large-scale spatial data; however, productivity estimates need to be processed from high spatial resolution data generated from satellites with high accuracy and reliability, especially for smallholder livelihood areas where smaller plots contrast with large farms. This study used reflectance data from Sentinel-2 satellite imagery acquired for the 12 months between December 2020 and November 2021. The imagery included 213 plots where data on rubber production in smallholder agriculture were collected. Six vegetation indices (Vis), namely Green Soil Adjusted Vegetation Index (GSAVI), Modified Simple Ratio (MSR), Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Normalized Green (NR), and Ratio Vegetation Index (RVI) were used to estimate the rubber yield. The study found that the red edge spectral band (band 5) provided the best prediction with R2 = 0.79 and RMSE = 29.63 kg/ha, outperforming all other spectral bands and VIs. The MSR index provided the highest coefficient of determination, with R2 = 0.62 and RMSE = 39.25 kg/ha. When the red edge reflectance was combined with the best VI, MSR, the prediction model only slightly improved, with a coefficient determination of (R2) of 0.80 and an RMSE of 29.42 kg/ha. The results demonstrated that the Sentinel-2 data are suitable for rubber yield prediction for smallholder farmers. The findings of this study can be used as a guideline to apply in other countries or areas. Future studies will require the use of reflectance and vegetation indices derived from satellite data in combination with meteorological data, as well as the application of complex models, such as machine learning and deep learning.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Niwat Bhumiphan; Jurawan Nontapon; Siwa Kaewplang; Neti Srihanu; Werapong Koedsin; Alfredo Huete;doi: 10.3390/su15097223
Rubber is a perennial plant grown to produce natural rubber. It is a raw material for industrial and non-industrial products important to the world economy. The sustainability of natural rubber production is, therefore, critical for smallholder livelihoods and economic development. To maintain price stability, it is important to estimate the yields in advance. Remote sensing technology can effectively provide large-scale spatial data; however, productivity estimates need to be processed from high spatial resolution data generated from satellites with high accuracy and reliability, especially for smallholder livelihood areas where smaller plots contrast with large farms. This study used reflectance data from Sentinel-2 satellite imagery acquired for the 12 months between December 2020 and November 2021. The imagery included 213 plots where data on rubber production in smallholder agriculture were collected. Six vegetation indices (Vis), namely Green Soil Adjusted Vegetation Index (GSAVI), Modified Simple Ratio (MSR), Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Normalized Green (NR), and Ratio Vegetation Index (RVI) were used to estimate the rubber yield. The study found that the red edge spectral band (band 5) provided the best prediction with R2 = 0.79 and RMSE = 29.63 kg/ha, outperforming all other spectral bands and VIs. The MSR index provided the highest coefficient of determination, with R2 = 0.62 and RMSE = 39.25 kg/ha. When the red edge reflectance was combined with the best VI, MSR, the prediction model only slightly improved, with a coefficient determination of (R2) of 0.80 and an RMSE of 29.42 kg/ha. The results demonstrated that the Sentinel-2 data are suitable for rubber yield prediction for smallholder farmers. The findings of this study can be used as a guideline to apply in other countries or areas. Future studies will require the use of reflectance and vegetation indices derived from satellite data in combination with meteorological data, as well as the application of complex models, such as machine learning and deep learning.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Davies, Janet; Beggs, Paul; Medek, Danielle; Newnham, Rewi; Erbas, Bircan; Thibaudon, Michel; Katelaris, Constance; Haberle, Simon; Newbigin, Ed; Huete, Alfredo;Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/70707Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/70707Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Davies, Janet; Beggs, Paul; Medek, Danielle; Newnham, Rewi; Erbas, Bircan; Thibaudon, Michel; Katelaris, Constance; Haberle, Simon; Newbigin, Ed; Huete, Alfredo;Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/70707Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/70707Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Alok Kumar Pandey; Amit Kumar Mishra; Ritesh Kumar; Shivesh Berwal; Rakhesh Devadas; Alfredo Huete; Krishan Kumar;pmid: 28069367
This study examines the spatio-temporal trends obtained from decade long (Jan 2003-Dec 2014) satellite observational data of Atmospheric Infrared Sounder (AIRS) and Measurements of Pollution in the Troposphere (MOPITT) on carbon monoxide (CO) concentration over the Indo-Gangetic Plains (IGP) region. The time sequence plots of columnar CO levels over the western, central and eastern IGP regions reveal marked seasonal behaviour, with lowest CO levels occurring during the monsoon months and the highest CO levels occurring during the pre-monsoon period. A negative correlation between CO levels and rainfall is observed. CO vertical profiles show relatively high values in the upper troposphere at ∼200 hPa level during the monsoon months, thus suggesting the role of convective transport and advection in addition to washout behind the decreased CO levels during this period. MOPITT and AIRS observations show a decreasing trend of 9.6 × 1015 and 1.5 × 1016 molecules cm-2 yr-1, respectively, in columnar CO levels over the IGP region. The results show the existence of a spatial gradient in CO from the eastern (higher levels) to western IGP region (lower levels). Data from the Census of India on the number of households using various cooking fuels in the IGP region shows the prevalence of biomass-fuel (i.e. firewood, crop residue, cowdung etc.) use over the eastern and central IGP regions and that of liquefied petroleum gas over the western IGP region. CO emission estimates from cooking activity over the three IGP regions are found to be in the order east > central > west, which support the existence of the spatial gradient in CO from eastern to the western IGP region. Our results support the intervention of present Indian government on limiting the use of biomass-fuels in domestic cooking to achieve the benefits in terms of the better air quality, household health and regional/global climate change mitigation.
Environmental Pollut... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2016.12.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Pollut... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2016.12.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Alok Kumar Pandey; Amit Kumar Mishra; Ritesh Kumar; Shivesh Berwal; Rakhesh Devadas; Alfredo Huete; Krishan Kumar;pmid: 28069367
This study examines the spatio-temporal trends obtained from decade long (Jan 2003-Dec 2014) satellite observational data of Atmospheric Infrared Sounder (AIRS) and Measurements of Pollution in the Troposphere (MOPITT) on carbon monoxide (CO) concentration over the Indo-Gangetic Plains (IGP) region. The time sequence plots of columnar CO levels over the western, central and eastern IGP regions reveal marked seasonal behaviour, with lowest CO levels occurring during the monsoon months and the highest CO levels occurring during the pre-monsoon period. A negative correlation between CO levels and rainfall is observed. CO vertical profiles show relatively high values in the upper troposphere at ∼200 hPa level during the monsoon months, thus suggesting the role of convective transport and advection in addition to washout behind the decreased CO levels during this period. MOPITT and AIRS observations show a decreasing trend of 9.6 × 1015 and 1.5 × 1016 molecules cm-2 yr-1, respectively, in columnar CO levels over the IGP region. The results show the existence of a spatial gradient in CO from the eastern (higher levels) to western IGP region (lower levels). Data from the Census of India on the number of households using various cooking fuels in the IGP region shows the prevalence of biomass-fuel (i.e. firewood, crop residue, cowdung etc.) use over the eastern and central IGP regions and that of liquefied petroleum gas over the western IGP region. CO emission estimates from cooking activity over the three IGP regions are found to be in the order east > central > west, which support the existence of the spatial gradient in CO from eastern to the western IGP region. Our results support the intervention of present Indian government on limiting the use of biomass-fuels in domestic cooking to achieve the benefits in terms of the better air quality, household health and regional/global climate change mitigation.
Environmental Pollut... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2016.12.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Pollut... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2016.12.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United States, Brazil, Brazil, FrancePublisher:Wiley Fisher, Joshua; Malhi, Yadvinder; Bonal, Damien; da Rocha, Humberto; de Araujos, Alessandro; Gamo, Minoru; Goulden, Michael; Hirano, Takashi; Huete, Alfredo; Kondo, Hiroaki; Kumagai, Tomo'Omi; Loescher, Henry; Miller, Scott; Nobre, Antonio; Nouvellon, Yann; Oberbauer, Steven; Panuthai, Samreong; Roupsard, Olivier; Saleska, Scott; Tanaka, Katsunori; Tanaka, Nobuaki; Tu, Kevin; von Randow, Celso;AbstractTropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan‐tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation‐based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from Ω decoupling factor), especially at the wetter sites; (2) the resistance‐based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature‐based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia‐wide evapotranspiration of 1370 mm yr−1, but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr−1) is considered in discussion on the use of flux data to validate and interpolate models.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/7tc151h4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01813.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 208 citations 208 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/7tc151h4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01813.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United States, Brazil, Brazil, FrancePublisher:Wiley Fisher, Joshua; Malhi, Yadvinder; Bonal, Damien; da Rocha, Humberto; de Araujos, Alessandro; Gamo, Minoru; Goulden, Michael; Hirano, Takashi; Huete, Alfredo; Kondo, Hiroaki; Kumagai, Tomo'Omi; Loescher, Henry; Miller, Scott; Nobre, Antonio; Nouvellon, Yann; Oberbauer, Steven; Panuthai, Samreong; Roupsard, Olivier; Saleska, Scott; Tanaka, Katsunori; Tanaka, Nobuaki; Tu, Kevin; von Randow, Celso;AbstractTropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan‐tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation‐based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from Ω decoupling factor), especially at the wetter sites; (2) the resistance‐based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature‐based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia‐wide evapotranspiration of 1370 mm yr−1, but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr−1) is considered in discussion on the use of flux data to validate and interpolate models.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/7tc151h4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01813.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 208 citations 208 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/7tc151h4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01813.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BrazilPublisher:Springer Science and Business Media LLC Saleska, Scott Reid; Wu, Jin; Guan, Kaiyu; Araüjo, Alessandro Carioca de; Huete, Alfredo Ramon; Nobre, Antônio Donato; Restrepo-Coupé, Natalia;doi: 10.1038/nature16457
pmid: 26983544
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BrazilPublisher:Springer Science and Business Media LLC Saleska, Scott Reid; Wu, Jin; Guan, Kaiyu; Araüjo, Alessandro Carioca de; Huete, Alfredo Ramon; Nobre, Antônio Donato; Restrepo-Coupé, Natalia;doi: 10.1038/nature16457
pmid: 26983544
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | IMBALANCE-PARC| Discovery Projects - Grant ID: DP170101630 ,EC| IMBALANCE-PYongguang Zhang; Yongguang Zhang; Songhan Wang; Songhan Wang; Yongshuo H. Fu; Weimin Ju; Weimin Ju; Alfredo Huete; Josep Peñuelas; Yuyu Zhou; Alessandro Cescatti; Min Liu;pmid: 31235928
Photosynthetic phenology has large effects on the land-atmosphere carbon exchange. Due to limited experimental assessments, a comprehensive understanding of the variations of photosynthetic phenology under future climate and its associated controlling factors is still missing, despite its high sensitivities to climate. Here, we develop an approach that uses cities as natural laboratories, since plants in urban areas are often exposed to higher temperatures and carbon dioxide (CO2) concentrations, which reflect expected future environmental conditions. Using more than 880 urban-rural gradients across the Northern Hemisphere (≥30° N), combined with concurrent satellite retrievals of Sun-induced chlorophyll fluorescence (SIF) and atmospheric CO2, we investigated the combined impacts of elevated CO2 and temperature on photosynthetic phenology at the large scale. The results showed that, under urban conditions of elevated CO2 and temperature, vegetation photosynthetic activity began earlier (-5.6 ± 0.7 d), peaked earlier (-4.9 ± 0.9 d) and ended later (4.6 ± 0.8 d) than in neighbouring rural areas, with a striking two- to fourfold higher climate sensitivity than greenness phenology. The earlier start and peak of season were sensitive to both the enhancements of CO2 and temperature, whereas the delayed end of season was mainly attributed to CO2 enrichments. We used these sensitivities to project phenology shifts under four Representative Concentration Pathway climate scenarios, predicting that vegetation will have prolonged photosynthetic seasons in the coming two decades. This observation-driven study indicates that realistic urban environments, together with SIF observations, provide a promising method for studying vegetation physiology under future climate change.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0931-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0931-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | IMBALANCE-PARC| Discovery Projects - Grant ID: DP170101630 ,EC| IMBALANCE-PYongguang Zhang; Yongguang Zhang; Songhan Wang; Songhan Wang; Yongshuo H. Fu; Weimin Ju; Weimin Ju; Alfredo Huete; Josep Peñuelas; Yuyu Zhou; Alessandro Cescatti; Min Liu;pmid: 31235928
Photosynthetic phenology has large effects on the land-atmosphere carbon exchange. Due to limited experimental assessments, a comprehensive understanding of the variations of photosynthetic phenology under future climate and its associated controlling factors is still missing, despite its high sensitivities to climate. Here, we develop an approach that uses cities as natural laboratories, since plants in urban areas are often exposed to higher temperatures and carbon dioxide (CO2) concentrations, which reflect expected future environmental conditions. Using more than 880 urban-rural gradients across the Northern Hemisphere (≥30° N), combined with concurrent satellite retrievals of Sun-induced chlorophyll fluorescence (SIF) and atmospheric CO2, we investigated the combined impacts of elevated CO2 and temperature on photosynthetic phenology at the large scale. The results showed that, under urban conditions of elevated CO2 and temperature, vegetation photosynthetic activity began earlier (-5.6 ± 0.7 d), peaked earlier (-4.9 ± 0.9 d) and ended later (4.6 ± 0.8 d) than in neighbouring rural areas, with a striking two- to fourfold higher climate sensitivity than greenness phenology. The earlier start and peak of season were sensitive to both the enhancements of CO2 and temperature, whereas the delayed end of season was mainly attributed to CO2 enrichments. We used these sensitivities to project phenology shifts under four Representative Concentration Pathway climate scenarios, predicting that vegetation will have prolonged photosynthetic seasons in the coming two decades. This observation-driven study indicates that realistic urban environments, together with SIF observations, provide a promising method for studying vegetation physiology under future climate change.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0931-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0931-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 New Zealand, Australia, Spain, New Zealand, Spain, Malaysia, MalaysiaPublisher:Copernicus GmbH Funded by:ARC | Methane uptake of forest ..., ARC | MEGA - Mobile Ecosystem G..., ARC | Discovery Projects - Gran... +3 projectsARC| Methane uptake of forest soils ,ARC| MEGA - Mobile Ecosystem Gas-exchange Analyser for Australian landscapes ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Future Fellowships - Grant ID: FT110100602 ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to regionJason Beringer; Lindsay B. Hutley; Ian McHugh; Stefan K. Arndt; David I. Campbell; Helen Cleugh; James Cleverly; Víctor Resco de Dios; Derek Eamus; Bradley J. Evans; Cäcilia Ewenz; Peter R. Grace; Anne Griebel; Vanessa Haverd; Nina Hinko‐Najera; Alfredo Huete; Peter Isaac; Kasturi Devi Kanniah; R. Leuning; Michael J. Liddell; Craig Macfarlane; Wayne S. Meyer; Caitlin E. Moore; Elise Pendall; Alison Phillips; R. Phillips; Suzanne M. Prober; Natalia Restrepo‐Coupé; Susanna Rutledge-Jonker; Ivan Schroder; Richard Silberstein; Patricia Southall; Mei Sun Yee; Nigel Tapper; Eva van Gorsel; Camilla Vote; Jeffrey P. Walker; Tim Wardlaw;handle: 2328/36758 , 2440/106693 , 11343/121939 , 10289/10935
Abstract. OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m−2 yr−1) and the natural raised peat bog site having a very low GPP (820 gC m−2 yr−1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.
Flinders Academic Co... arrow_drop_down Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/36758Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2403Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.5194/bg-13-5895-2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/10289/10935Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaThe University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5895-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu186 citations 186 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flinders Academic Co... arrow_drop_down Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/36758Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2403Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.5194/bg-13-5895-2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/10289/10935Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaThe University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5895-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 New Zealand, Australia, Spain, New Zealand, Spain, Malaysia, MalaysiaPublisher:Copernicus GmbH Funded by:ARC | Methane uptake of forest ..., ARC | MEGA - Mobile Ecosystem G..., ARC | Discovery Projects - Gran... +3 projectsARC| Methane uptake of forest soils ,ARC| MEGA - Mobile Ecosystem Gas-exchange Analyser for Australian landscapes ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Future Fellowships - Grant ID: FT110100602 ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to regionJason Beringer; Lindsay B. Hutley; Ian McHugh; Stefan K. Arndt; David I. Campbell; Helen Cleugh; James Cleverly; Víctor Resco de Dios; Derek Eamus; Bradley J. Evans; Cäcilia Ewenz; Peter R. Grace; Anne Griebel; Vanessa Haverd; Nina Hinko‐Najera; Alfredo Huete; Peter Isaac; Kasturi Devi Kanniah; R. Leuning; Michael J. Liddell; Craig Macfarlane; Wayne S. Meyer; Caitlin E. Moore; Elise Pendall; Alison Phillips; R. Phillips; Suzanne M. Prober; Natalia Restrepo‐Coupé; Susanna Rutledge-Jonker; Ivan Schroder; Richard Silberstein; Patricia Southall; Mei Sun Yee; Nigel Tapper; Eva van Gorsel; Camilla Vote; Jeffrey P. Walker; Tim Wardlaw;handle: 2328/36758 , 2440/106693 , 11343/121939 , 10289/10935
Abstract. OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m−2 yr−1) and the natural raised peat bog site having a very low GPP (820 gC m−2 yr−1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.
Flinders Academic Co... arrow_drop_down Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/36758Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2403Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.5194/bg-13-5895-2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/10289/10935Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaThe University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5895-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu186 citations 186 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flinders Academic Co... arrow_drop_down Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/36758Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2403Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://dx.doi.org/10.5194/bg-13-5895-2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2016License: CC BYFull-Text: https://hdl.handle.net/10289/10935Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaThe University of Melbourne: Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5895-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:Public Library of Science (PLoS) Dailiang Peng; Chaoyang Wu; Bing Zhang; Alfredo Huete; Xiaoyang Zhang; Rui Sun; Liping Lei; Wenjing Huang; Liangyun Liu; Xinjie Liu; Jun Li; Shezhou Luo; Bin Fang;Terrestrial ecosystems greatly contribute to carbon (C) emission reduction targets through photosynthetic C uptake.Net primary production (NPP) represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP) zone accounts for more than 40% of China’s landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC) on inter-annual changes of TNSP zone for 2001–2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI) and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05). The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA) to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2016Full-Text: https://doi.org/10.7916/D8TM7B82Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0158173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2016Full-Text: https://doi.org/10.7916/D8TM7B82Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0158173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United StatesPublisher:Public Library of Science (PLoS) Dailiang Peng; Chaoyang Wu; Bing Zhang; Alfredo Huete; Xiaoyang Zhang; Rui Sun; Liping Lei; Wenjing Huang; Liangyun Liu; Xinjie Liu; Jun Li; Shezhou Luo; Bin Fang;Terrestrial ecosystems greatly contribute to carbon (C) emission reduction targets through photosynthetic C uptake.Net primary production (NPP) represents the amount of atmospheric C fixed by plants and accumulated as biomass. The Three-North Shelterbelt Program (TNSP) zone accounts for more than 40% of China’s landmass. This zone has been the scene of several large-scale ecological restoration efforts since the late 1990s, and has witnessed significant changes in climate and human activities.Assessing the relative roles of different causal factors on NPP variability in TNSP zone is very important for establishing reasonable local policies to realize the emission reduction targets for central government. In this study, we examined the relative roles of drought and land cover conversion(LCC) on inter-annual changes of TNSP zone for 2001–2010. We applied integrated correlation and decomposition analyses to a Standardized Evapotranspiration Index (SPEI) and MODIS land cover dataset. Our results show that the 10-year average NPP within this region was about 420 Tg C. We found that about 60% of total annual NPP over the study area was significantly correlated with SPEI (p<0.05). The LCC-NPP relationship, which is especially evident for forests in the south-central area, indicates that ecological programs have a positive impact on C sequestration in the TNSP zone. Decomposition analysis generally indicated that the contributions of LCC, drought, and other Natural or Anthropogenic activities (ONA) to changes in NPP generally had a consistent distribution pattern for consecutive years. Drought and ONA contributed about 74% and 23% to the total changes in NPP, respectively, and the remaining 3% was attributed to LCC. Our results highlight the importance of rainfall supply on NPP variability in the TNSP zone.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2016Full-Text: https://doi.org/10.7916/D8TM7B82Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0158173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2016Full-Text: https://doi.org/10.7916/D8TM7B82Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0158173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Alfredo Huete;doi: 10.1038/nature17301
pmid: 26886792
Satellite data have allowed scientists to generate a quantitative model to assess the response rates of different ecosystems to climate variability. The index provides a tool for comparing regional sensitivity and resilience. See Letter p.229 A key question in climate change research is how to identify the ecosystems most sensitive to climate variation. This study uses MODIS satellite data collected between February 2000 and December 2013 to develop a new metric, the 'vegetation sensitivity index', which measures ecosystem response to external forcing of three key climate variables — air temperature, water availability and cloud cover. The index can be used to identify the resilience status of ecosystems at high spatial resolution on a global scale. Areas of amplified sensitivity to climate variability are evident in Arctic tundra, boreal and tropical rainforest, alpine regions, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Alfredo Huete;doi: 10.1038/nature17301
pmid: 26886792
Satellite data have allowed scientists to generate a quantitative model to assess the response rates of different ecosystems to climate variability. The index provides a tool for comparing regional sensitivity and resilience. See Letter p.229 A key question in climate change research is how to identify the ecosystems most sensitive to climate variation. This study uses MODIS satellite data collected between February 2000 and December 2013 to develop a new metric, the 'vegetation sensitivity index', which measures ecosystem response to external forcing of three key climate variables — air temperature, water availability and cloud cover. The index can be used to identify the resilience status of ecosystems at high spatial resolution on a global scale. Areas of amplified sensitivity to climate variability are evident in Arctic tundra, boreal and tropical rainforest, alpine regions, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17301&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BrazilPublisher:American Association for the Advancement of Science (AAAS) Authors: Hideki Kobayashi; N. Prohaska; Kenia Teodoro Wiedemann; Kenia Teodoro Wiedemann; +22 AuthorsHideki Kobayashi; N. Prohaska; Kenia Teodoro Wiedemann; Kenia Teodoro Wiedemann; Scott R. Saleska; Bradley O. Christoffersen; Bradley O. Christoffersen; Rodrigo Dda Silva; Maurício Lamano Ferreira; Bruce Walker Nelson; Matthew N. Hayek; Scott C. Stark; Alfredo Huete; Loren P. Albert; Aline Pontes Lopes; Paulo M. Brando; Suelen Marostica; Travis E. Huxman; Kleber Silva Campos; Julia Valentim Tavares; Jin Wu; Natalia Restrepo-Coupe; Natalia Restrepo-Coupe; Dennis G. Dye; Kaiyu Guan; Kaiyu Guan;pmid: 26917771
Leaf seasonality in Amazon forests Models assume that lower precipitation in tropical forests means less plant-available water and less photosynthesis. Direct measurements in the Amazon, however, show that production remains constant or increases in the dry season. To investigate this mismatch, Wu et al. use tower-based cameras to detect the phenology (i.e., the seasonal patterns) of leaf dynamics in tropical tree crowns in Amazonia, Brazil, and relate this to patterns of CO 2 flux. Accounting for age-dependent variation among individual leaves and crowns is necessary for understanding the seasonal dynamics of photosynthesis in the entire ecosystem. Leaf phenology regulates seasonality of the carbon flux in tropical forests across a gradient of climate zones. Science , this issue p. 972
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aad5068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 370 citations 370 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aad5068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BrazilPublisher:American Association for the Advancement of Science (AAAS) Authors: Hideki Kobayashi; N. Prohaska; Kenia Teodoro Wiedemann; Kenia Teodoro Wiedemann; +22 AuthorsHideki Kobayashi; N. Prohaska; Kenia Teodoro Wiedemann; Kenia Teodoro Wiedemann; Scott R. Saleska; Bradley O. Christoffersen; Bradley O. Christoffersen; Rodrigo Dda Silva; Maurício Lamano Ferreira; Bruce Walker Nelson; Matthew N. Hayek; Scott C. Stark; Alfredo Huete; Loren P. Albert; Aline Pontes Lopes; Paulo M. Brando; Suelen Marostica; Travis E. Huxman; Kleber Silva Campos; Julia Valentim Tavares; Jin Wu; Natalia Restrepo-Coupe; Natalia Restrepo-Coupe; Dennis G. Dye; Kaiyu Guan; Kaiyu Guan;pmid: 26917771
Leaf seasonality in Amazon forests Models assume that lower precipitation in tropical forests means less plant-available water and less photosynthesis. Direct measurements in the Amazon, however, show that production remains constant or increases in the dry season. To investigate this mismatch, Wu et al. use tower-based cameras to detect the phenology (i.e., the seasonal patterns) of leaf dynamics in tropical tree crowns in Amazonia, Brazil, and relate this to patterns of CO 2 flux. Accounting for age-dependent variation among individual leaves and crowns is necessary for understanding the seasonal dynamics of photosynthesis in the entire ecosystem. Leaf phenology regulates seasonality of the carbon flux in tropical forests across a gradient of climate zones. Science , this issue p. 972
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aad5068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 370 citations 370 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aad5068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Niwat Bhumiphan; Jurawan Nontapon; Siwa Kaewplang; Neti Srihanu; Werapong Koedsin; Alfredo Huete;doi: 10.3390/su15097223
Rubber is a perennial plant grown to produce natural rubber. It is a raw material for industrial and non-industrial products important to the world economy. The sustainability of natural rubber production is, therefore, critical for smallholder livelihoods and economic development. To maintain price stability, it is important to estimate the yields in advance. Remote sensing technology can effectively provide large-scale spatial data; however, productivity estimates need to be processed from high spatial resolution data generated from satellites with high accuracy and reliability, especially for smallholder livelihood areas where smaller plots contrast with large farms. This study used reflectance data from Sentinel-2 satellite imagery acquired for the 12 months between December 2020 and November 2021. The imagery included 213 plots where data on rubber production in smallholder agriculture were collected. Six vegetation indices (Vis), namely Green Soil Adjusted Vegetation Index (GSAVI), Modified Simple Ratio (MSR), Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Normalized Green (NR), and Ratio Vegetation Index (RVI) were used to estimate the rubber yield. The study found that the red edge spectral band (band 5) provided the best prediction with R2 = 0.79 and RMSE = 29.63 kg/ha, outperforming all other spectral bands and VIs. The MSR index provided the highest coefficient of determination, with R2 = 0.62 and RMSE = 39.25 kg/ha. When the red edge reflectance was combined with the best VI, MSR, the prediction model only slightly improved, with a coefficient determination of (R2) of 0.80 and an RMSE of 29.42 kg/ha. The results demonstrated that the Sentinel-2 data are suitable for rubber yield prediction for smallholder farmers. The findings of this study can be used as a guideline to apply in other countries or areas. Future studies will require the use of reflectance and vegetation indices derived from satellite data in combination with meteorological data, as well as the application of complex models, such as machine learning and deep learning.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Niwat Bhumiphan; Jurawan Nontapon; Siwa Kaewplang; Neti Srihanu; Werapong Koedsin; Alfredo Huete;doi: 10.3390/su15097223
Rubber is a perennial plant grown to produce natural rubber. It is a raw material for industrial and non-industrial products important to the world economy. The sustainability of natural rubber production is, therefore, critical for smallholder livelihoods and economic development. To maintain price stability, it is important to estimate the yields in advance. Remote sensing technology can effectively provide large-scale spatial data; however, productivity estimates need to be processed from high spatial resolution data generated from satellites with high accuracy and reliability, especially for smallholder livelihood areas where smaller plots contrast with large farms. This study used reflectance data from Sentinel-2 satellite imagery acquired for the 12 months between December 2020 and November 2021. The imagery included 213 plots where data on rubber production in smallholder agriculture were collected. Six vegetation indices (Vis), namely Green Soil Adjusted Vegetation Index (GSAVI), Modified Simple Ratio (MSR), Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Normalized Green (NR), and Ratio Vegetation Index (RVI) were used to estimate the rubber yield. The study found that the red edge spectral band (band 5) provided the best prediction with R2 = 0.79 and RMSE = 29.63 kg/ha, outperforming all other spectral bands and VIs. The MSR index provided the highest coefficient of determination, with R2 = 0.62 and RMSE = 39.25 kg/ha. When the red edge reflectance was combined with the best VI, MSR, the prediction model only slightly improved, with a coefficient determination of (R2) of 0.80 and an RMSE of 29.42 kg/ha. The results demonstrated that the Sentinel-2 data are suitable for rubber yield prediction for smallholder farmers. The findings of this study can be used as a guideline to apply in other countries or areas. Future studies will require the use of reflectance and vegetation indices derived from satellite data in combination with meteorological data, as well as the application of complex models, such as machine learning and deep learning.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Davies, Janet; Beggs, Paul; Medek, Danielle; Newnham, Rewi; Erbas, Bircan; Thibaudon, Michel; Katelaris, Constance; Haberle, Simon; Newbigin, Ed; Huete, Alfredo;Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/70707Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/70707Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Davies, Janet; Beggs, Paul; Medek, Danielle; Newnham, Rewi; Erbas, Bircan; Thibaudon, Michel; Katelaris, Constance; Haberle, Simon; Newbigin, Ed; Huete, Alfredo;Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/70707Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/70707Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Alok Kumar Pandey; Amit Kumar Mishra; Ritesh Kumar; Shivesh Berwal; Rakhesh Devadas; Alfredo Huete; Krishan Kumar;pmid: 28069367
This study examines the spatio-temporal trends obtained from decade long (Jan 2003-Dec 2014) satellite observational data of Atmospheric Infrared Sounder (AIRS) and Measurements of Pollution in the Troposphere (MOPITT) on carbon monoxide (CO) concentration over the Indo-Gangetic Plains (IGP) region. The time sequence plots of columnar CO levels over the western, central and eastern IGP regions reveal marked seasonal behaviour, with lowest CO levels occurring during the monsoon months and the highest CO levels occurring during the pre-monsoon period. A negative correlation between CO levels and rainfall is observed. CO vertical profiles show relatively high values in the upper troposphere at ∼200 hPa level during the monsoon months, thus suggesting the role of convective transport and advection in addition to washout behind the decreased CO levels during this period. MOPITT and AIRS observations show a decreasing trend of 9.6 × 1015 and 1.5 × 1016 molecules cm-2 yr-1, respectively, in columnar CO levels over the IGP region. The results show the existence of a spatial gradient in CO from the eastern (higher levels) to western IGP region (lower levels). Data from the Census of India on the number of households using various cooking fuels in the IGP region shows the prevalence of biomass-fuel (i.e. firewood, crop residue, cowdung etc.) use over the eastern and central IGP regions and that of liquefied petroleum gas over the western IGP region. CO emission estimates from cooking activity over the three IGP regions are found to be in the order east > central > west, which support the existence of the spatial gradient in CO from eastern to the western IGP region. Our results support the intervention of present Indian government on limiting the use of biomass-fuels in domestic cooking to achieve the benefits in terms of the better air quality, household health and regional/global climate change mitigation.
Environmental Pollut... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2016.12.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Pollut... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2016.12.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Alok Kumar Pandey; Amit Kumar Mishra; Ritesh Kumar; Shivesh Berwal; Rakhesh Devadas; Alfredo Huete; Krishan Kumar;pmid: 28069367
This study examines the spatio-temporal trends obtained from decade long (Jan 2003-Dec 2014) satellite observational data of Atmospheric Infrared Sounder (AIRS) and Measurements of Pollution in the Troposphere (MOPITT) on carbon monoxide (CO) concentration over the Indo-Gangetic Plains (IGP) region. The time sequence plots of columnar CO levels over the western, central and eastern IGP regions reveal marked seasonal behaviour, with lowest CO levels occurring during the monsoon months and the highest CO levels occurring during the pre-monsoon period. A negative correlation between CO levels and rainfall is observed. CO vertical profiles show relatively high values in the upper troposphere at ∼200 hPa level during the monsoon months, thus suggesting the role of convective transport and advection in addition to washout behind the decreased CO levels during this period. MOPITT and AIRS observations show a decreasing trend of 9.6 × 1015 and 1.5 × 1016 molecules cm-2 yr-1, respectively, in columnar CO levels over the IGP region. The results show the existence of a spatial gradient in CO from the eastern (higher levels) to western IGP region (lower levels). Data from the Census of India on the number of households using various cooking fuels in the IGP region shows the prevalence of biomass-fuel (i.e. firewood, crop residue, cowdung etc.) use over the eastern and central IGP regions and that of liquefied petroleum gas over the western IGP region. CO emission estimates from cooking activity over the three IGP regions are found to be in the order east > central > west, which support the existence of the spatial gradient in CO from eastern to the western IGP region. Our results support the intervention of present Indian government on limiting the use of biomass-fuels in domestic cooking to achieve the benefits in terms of the better air quality, household health and regional/global climate change mitigation.
Environmental Pollut... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2016.12.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Environmental Pollut... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2016.12.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United States, Brazil, Brazil, FrancePublisher:Wiley Fisher, Joshua; Malhi, Yadvinder; Bonal, Damien; da Rocha, Humberto; de Araujos, Alessandro; Gamo, Minoru; Goulden, Michael; Hirano, Takashi; Huete, Alfredo; Kondo, Hiroaki; Kumagai, Tomo'Omi; Loescher, Henry; Miller, Scott; Nobre, Antonio; Nouvellon, Yann; Oberbauer, Steven; Panuthai, Samreong; Roupsard, Olivier; Saleska, Scott; Tanaka, Katsunori; Tanaka, Nobuaki; Tu, Kevin; von Randow, Celso;AbstractTropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan‐tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation‐based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from Ω decoupling factor), especially at the wetter sites; (2) the resistance‐based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature‐based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia‐wide evapotranspiration of 1370 mm yr−1, but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr−1) is considered in discussion on the use of flux data to validate and interpolate models.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/7tc151h4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01813.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 208 citations 208 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/7tc151h4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01813.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United States, Brazil, Brazil, FrancePublisher:Wiley Fisher, Joshua; Malhi, Yadvinder; Bonal, Damien; da Rocha, Humberto; de Araujos, Alessandro; Gamo, Minoru; Goulden, Michael; Hirano, Takashi; Huete, Alfredo; Kondo, Hiroaki; Kumagai, Tomo'Omi; Loescher, Henry; Miller, Scott; Nobre, Antonio; Nouvellon, Yann; Oberbauer, Steven; Panuthai, Samreong; Roupsard, Olivier; Saleska, Scott; Tanaka, Katsunori; Tanaka, Nobuaki; Tu, Kevin; von Randow, Celso;AbstractTropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan‐tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation‐based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from Ω decoupling factor), especially at the wetter sites; (2) the resistance‐based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature‐based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia‐wide evapotranspiration of 1370 mm yr−1, but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr−1) is considered in discussion on the use of flux data to validate and interpolate models.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/7tc151h4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01813.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 208 citations 208 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/7tc151h4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01813.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BrazilPublisher:Springer Science and Business Media LLC Saleska, Scott Reid; Wu, Jin; Guan, Kaiyu; Araüjo, Alessandro Carioca de; Huete, Alfredo Ramon; Nobre, Antônio Donato; Restrepo-Coupé, Natalia;doi: 10.1038/nature16457
pmid: 26983544
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BrazilPublisher:Springer Science and Business Media LLC Saleska, Scott Reid; Wu, Jin; Guan, Kaiyu; Araüjo, Alessandro Carioca de; Huete, Alfredo Ramon; Nobre, Antônio Donato; Restrepo-Coupé, Natalia;doi: 10.1038/nature16457
pmid: 26983544
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | IMBALANCE-PARC| Discovery Projects - Grant ID: DP170101630 ,EC| IMBALANCE-PYongguang Zhang; Yongguang Zhang; Songhan Wang; Songhan Wang; Yongshuo H. Fu; Weimin Ju; Weimin Ju; Alfredo Huete; Josep Peñuelas; Yuyu Zhou; Alessandro Cescatti; Min Liu;pmid: 31235928
Photosynthetic phenology has large effects on the land-atmosphere carbon exchange. Due to limited experimental assessments, a comprehensive understanding of the variations of photosynthetic phenology under future climate and its associated controlling factors is still missing, despite its high sensitivities to climate. Here, we develop an approach that uses cities as natural laboratories, since plants in urban areas are often exposed to higher temperatures and carbon dioxide (CO2) concentrations, which reflect expected future environmental conditions. Using more than 880 urban-rural gradients across the Northern Hemisphere (≥30° N), combined with concurrent satellite retrievals of Sun-induced chlorophyll fluorescence (SIF) and atmospheric CO2, we investigated the combined impacts of elevated CO2 and temperature on photosynthetic phenology at the large scale. The results showed that, under urban conditions of elevated CO2 and temperature, vegetation photosynthetic activity began earlier (-5.6 ± 0.7 d), peaked earlier (-4.9 ± 0.9 d) and ended later (4.6 ± 0.8 d) than in neighbouring rural areas, with a striking two- to fourfold higher climate sensitivity than greenness phenology. The earlier start and peak of season were sensitive to both the enhancements of CO2 and temperature, whereas the delayed end of season was mainly attributed to CO2 enrichments. We used these sensitivities to project phenology shifts under four Representative Concentration Pathway climate scenarios, predicting that vegetation will have prolonged photosynthetic seasons in the coming two decades. This observation-driven study indicates that realistic urban environments, together with SIF observations, provide a promising method for studying vegetation physiology under future climate change.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0931-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0931-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | IMBALANCE-PARC| Discovery Projects - Grant ID: DP170101630 ,EC| IMBALANCE-PYongguang Zhang; Yongguang Zhang; Songhan Wang; Songhan Wang; Yongshuo H. Fu; Weimin Ju; Weimin Ju; Alfredo Huete; Josep Peñuelas; Yuyu Zhou; Alessandro Cescatti; Min Liu;pmid: 31235928
Photosynthetic phenology has large effects on the land-atmosphere carbon exchange. Due to limited experimental assessments, a comprehensive understanding of the variations of photosynthetic phenology under future climate and its associated controlling factors is still missing, despite its high sensitivities to climate. Here, we develop an approach that uses cities as natural laboratories, since plants in urban areas are often exposed to higher temperatures and carbon dioxide (CO2) concentrations, which reflect expected future environmental conditions. Using more than 880 urban-rural gradients across the Northern Hemisphere (≥30° N), combined with concurrent satellite retrievals of Sun-induced chlorophyll fluorescence (SIF) and atmospheric CO2, we investigated the combined impacts of elevated CO2 and temperature on photosynthetic phenology at the large scale. The results showed that, under urban conditions of elevated CO2 and temperature, vegetation photosynthetic activity began earlier (-5.6 ± 0.7 d), peaked earlier (-4.9 ± 0.9 d) and ended later (4.6 ± 0.8 d) than in neighbouring rural areas, with a striking two- to fourfold higher climate sensitivity than greenness phenology. The earlier start and peak of season were sensitive to both the enhancements of CO2 and temperature, whereas the delayed end of season was mainly attributed to CO2 enrichments. We used these sensitivities to project phenology shifts under four Representative Concentration Pathway climate scenarios, predicting that vegetation will have prolonged photosynthetic seasons in the coming two decades. This observation-driven study indicates that realistic urban environments, together with SIF observations, provide a promising method for studying vegetation physiology under future climate change.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0931-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-019-0931-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu