- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Fimbres-Acedo Yenitze Elizabeth; Traversari Silvia; Cacini Sonia; Costamagna Giulia; +3 AuthorsFimbres-Acedo Yenitze Elizabeth; Traversari Silvia; Cacini Sonia; Costamagna Giulia; Ginepro Marco; Massa; Daniele;handle: 20.500.14243/459923 , 2318/1887243
Low nutrient and high pH of circulating water represent two of the main issues to overcome for a successful combination of aquaculture and hydroponics in aquaponics offering a sustainable and circular economy solution for vegetable production. The purpose of this study was to screen the tolerance of four herbs to high pH and low nutrient concentration in hydroponics, i.e., green and red basils, mint, and rocket salad, with a focus on plant yield and nutraceutical aspects. Results highlighted green basil as the most tolerant species to low nutrient and high pH conditions followed by mint. On the contrary, negative effects from high pH and low nutrient were reported on red basil and especially rocket salad, which strongly affect their marketability parameters. Rocket salad fresh biomass was more than halved under the combination of high pH and low nutrients. Results on green and red basil showed the importance of testing the tolerance to these agronomic conditions at both species and variety levels. Despite the reduction in biomass, leaf pigments were not influenced by high pH and low nutrients and therefore can be considered parameters of minor importance for the evaluation of these species. In conclusion, the tolerance of green basil and mint to high pH and low nutrients under hydroponic conditions has been highlighted. Further investigation coupled with fish farming will be able to reinforce the convenience of using these species for aquaponics.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/1/41/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13010041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/1/41/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13010041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Fimbres-Acedo Yenitze Elizabeth; Traversari Silvia; Cacini Sonia; Costamagna Giulia; +3 AuthorsFimbres-Acedo Yenitze Elizabeth; Traversari Silvia; Cacini Sonia; Costamagna Giulia; Ginepro Marco; Massa; Daniele;handle: 20.500.14243/459923 , 2318/1887243
Low nutrient and high pH of circulating water represent two of the main issues to overcome for a successful combination of aquaculture and hydroponics in aquaponics offering a sustainable and circular economy solution for vegetable production. The purpose of this study was to screen the tolerance of four herbs to high pH and low nutrient concentration in hydroponics, i.e., green and red basils, mint, and rocket salad, with a focus on plant yield and nutraceutical aspects. Results highlighted green basil as the most tolerant species to low nutrient and high pH conditions followed by mint. On the contrary, negative effects from high pH and low nutrient were reported on red basil and especially rocket salad, which strongly affect their marketability parameters. Rocket salad fresh biomass was more than halved under the combination of high pH and low nutrients. Results on green and red basil showed the importance of testing the tolerance to these agronomic conditions at both species and variety levels. Despite the reduction in biomass, leaf pigments were not influenced by high pH and low nutrients and therefore can be considered parameters of minor importance for the evaluation of these species. In conclusion, the tolerance of green basil and mint to high pH and low nutrients under hydroponic conditions has been highlighted. Further investigation coupled with fish farming will be able to reinforce the convenience of using these species for aquaponics.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/1/41/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13010041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/1/41/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13010041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:International Society for Horticultural Science (ISHS) Daniele Massa; Sonia Cacini; S. Cannazzaro; Catello Pane; S. Di Lonardo; F. Gambineri; Silvia Traversari;handle: 20.500.14243/396190
Coconut coir dust is finding broad application in the ornamental sector as peat substitute. However, deeper investigations are needed since its performances are variable and not always optimal for different plant species and growing conditions. The use of non-thermal plasma (NTP) in re-circulating nutrient solution appears a promising and sustainable strategy to enhance crop protection, decrease the use of sanitizers and pesticides, and increase yield and quality of ornamental productions. Nevertheless, only a few examples of NTP application on containerized crops under operational growing conditions are available, particularly in combination with different substrates and fertigation regimes. In this work the application of NTP was tested on the nutrient solution used for the production of Ranunculus asiaticus potted plants. The effect was assessed in growing plants using two substrates (both 50:50 v v-1): 1) peat:perlite, and 2) coconut coir dust:perlite, and with two levels of fertilization. Plants grown on coconut coir dust had lower total biomass and flower number. On the other hand, in terms of biomass and tissue nutrient content, R. asiaticus plants developeded better at lower nutrient concentration than at the standard nutrient solution. NTP treatment increased the green biomass while did not improve the flower production. NTP-based sanitizing effects on the root zone, where the number of colony-forming units of fungi was significantly reduced, were observed only in presence of the standard nutrient solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17660/actahortic.2021.1317.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17660/actahortic.2021.1317.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:International Society for Horticultural Science (ISHS) Daniele Massa; Sonia Cacini; S. Cannazzaro; Catello Pane; S. Di Lonardo; F. Gambineri; Silvia Traversari;handle: 20.500.14243/396190
Coconut coir dust is finding broad application in the ornamental sector as peat substitute. However, deeper investigations are needed since its performances are variable and not always optimal for different plant species and growing conditions. The use of non-thermal plasma (NTP) in re-circulating nutrient solution appears a promising and sustainable strategy to enhance crop protection, decrease the use of sanitizers and pesticides, and increase yield and quality of ornamental productions. Nevertheless, only a few examples of NTP application on containerized crops under operational growing conditions are available, particularly in combination with different substrates and fertigation regimes. In this work the application of NTP was tested on the nutrient solution used for the production of Ranunculus asiaticus potted plants. The effect was assessed in growing plants using two substrates (both 50:50 v v-1): 1) peat:perlite, and 2) coconut coir dust:perlite, and with two levels of fertilization. Plants grown on coconut coir dust had lower total biomass and flower number. On the other hand, in terms of biomass and tissue nutrient content, R. asiaticus plants developeded better at lower nutrient concentration than at the standard nutrient solution. NTP treatment increased the green biomass while did not improve the flower production. NTP-based sanitizing effects on the root zone, where the number of colony-forming units of fungi was significantly reduced, were observed only in presence of the standard nutrient solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17660/actahortic.2021.1317.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17660/actahortic.2021.1317.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Belgium, Italy, ItalyPublisher:Wiley Barbara De Meester1; 2; Rebecca Van Acker1; 2; Marlies Wouters1; 2; Silvia Traversari3; 4; Marijke Steenackers5; Jenny Neukermans1; 2; Frank Van Breusegem1; 2; Annabelle Déjardin6; Gilles Pilate6; Wout Boerjan1; 2;Summary Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse‐grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol‐specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1‐yr‐old hpCAD wood had 10% less lignin, 3‐yr‐old hpCAD wood had wild‐type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1‐yr‐old and 3‐yr‐old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD‐deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
IRIS Cnr arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Belgium, Italy, ItalyPublisher:Wiley Barbara De Meester1; 2; Rebecca Van Acker1; 2; Marlies Wouters1; 2; Silvia Traversari3; 4; Marijke Steenackers5; Jenny Neukermans1; 2; Frank Van Breusegem1; 2; Annabelle Déjardin6; Gilles Pilate6; Wout Boerjan1; 2;Summary Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse‐grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol‐specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1‐yr‐old hpCAD wood had 10% less lignin, 3‐yr‐old hpCAD wood had wild‐type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1‐yr‐old and 3‐yr‐old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD‐deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
IRIS Cnr arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Silvia Traversari; Sonia Cacini; Angelica Galieni; Beatrice Nesi; Nicola Nicastro; Catello Pane;doi: 10.3390/su13073707
handle: 20.500.14243/515563
Ornamental plant production constitutes an important sector of the horticultural industry worldwide and fungal infections, that dramatically affect the aesthetic quality of plants, can cause serious economic and crop losses. The need to reduce the use of pesticides for controlling fungal outbreaks requires the development of new sustainable strategies for pathogen control. In particular, early and accurate large-scale detection of occurring symptoms is critical to face the ambitious challenge of an effective, energy-saving, and precise disease management. Here, the new trends in digital-based detection and available tools to treat fungal infections are presented in comparison with conventional practices. Recent advances in molecular biology tools, spectroscopic and imaging technologies and fungal risk models based on microclimate trends are examined. The revised spectroscopic and imaging technologies were tested through a case study on rose plants showing important fungal diseases (i.e., spot spectroscopy, hyperspectral, multispectral, and thermal imaging, fluorescence sensors). The final aim was the examination of conventional practices and current e-tools to gain the early detection of plant diseases, the identification of timing and spacing for their proper management, reduction in crop losses through environmentally friendly and sustainable production systems. Moreover, future perspectives for enhancing the integration of all these approaches are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Silvia Traversari; Sonia Cacini; Angelica Galieni; Beatrice Nesi; Nicola Nicastro; Catello Pane;doi: 10.3390/su13073707
handle: 20.500.14243/515563
Ornamental plant production constitutes an important sector of the horticultural industry worldwide and fungal infections, that dramatically affect the aesthetic quality of plants, can cause serious economic and crop losses. The need to reduce the use of pesticides for controlling fungal outbreaks requires the development of new sustainable strategies for pathogen control. In particular, early and accurate large-scale detection of occurring symptoms is critical to face the ambitious challenge of an effective, energy-saving, and precise disease management. Here, the new trends in digital-based detection and available tools to treat fungal infections are presented in comparison with conventional practices. Recent advances in molecular biology tools, spectroscopic and imaging technologies and fungal risk models based on microclimate trends are examined. The revised spectroscopic and imaging technologies were tested through a case study on rose plants showing important fungal diseases (i.e., spot spectroscopy, hyperspectral, multispectral, and thermal imaging, fluorescence sensors). The final aim was the examination of conventional practices and current e-tools to gain the early detection of plant diseases, the identification of timing and spacing for their proper management, reduction in crop losses through environmentally friendly and sustainable production systems. Moreover, future perspectives for enhancing the integration of all these approaches are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Frontiers Media SA Mirko Sodini; Silvia Traversari; Sonia Cacini; Irene Gonfiotti; Anna Lenzi; Daniele Massa;IntroductionThe non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.MethodsThe nutrient solution supplied to a red coloured variety of rocket salad [Diplotaxis tenuifolia (L.) DC. ‘Dragon’s Tongue’] grown in a hydroponic close loop system was treated with NTP. Low, medium, and high concentrations of N (i.e., 1, 10, and 20 mM) of the nutrient solution were tested in control (no NTP) or NTP treated conditions in two consecutive growing cycles. Results and discussionResults highlighted a N-dependent effect of NTP treatment showing a biomass stimulation at 10 mM N while negative effects of this technique at 1 and 20mM N. The biomass boosting of NTP found at 10 mMN coupled with an increase in K and Zn showing positive effects also on the nutraceutical aspects. Interestingly, different mechanisms seemed to be involved in the detrimental effects found at low and high N levels, i.e., a lower sensibility to N deficiency at 1 mM and a synergic negative effect of N and NTP in promoting oxidative stress at 20 mM.
IRIS Cnr arrow_drop_down Flore (Florence Research Repository)Article . 2024License: CC BY NC SAData sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1511335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Flore (Florence Research Repository)Article . 2024License: CC BY NC SAData sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1511335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Frontiers Media SA Mirko Sodini; Silvia Traversari; Sonia Cacini; Irene Gonfiotti; Anna Lenzi; Daniele Massa;IntroductionThe non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.MethodsThe nutrient solution supplied to a red coloured variety of rocket salad [Diplotaxis tenuifolia (L.) DC. ‘Dragon’s Tongue’] grown in a hydroponic close loop system was treated with NTP. Low, medium, and high concentrations of N (i.e., 1, 10, and 20 mM) of the nutrient solution were tested in control (no NTP) or NTP treated conditions in two consecutive growing cycles. Results and discussionResults highlighted a N-dependent effect of NTP treatment showing a biomass stimulation at 10 mM N while negative effects of this technique at 1 and 20mM N. The biomass boosting of NTP found at 10 mMN coupled with an increase in K and Zn showing positive effects also on the nutraceutical aspects. Interestingly, different mechanisms seemed to be involved in the detrimental effects found at low and high N levels, i.e., a lower sensibility to N deficiency at 1 mM and a synergic negative effect of N and NTP in promoting oxidative stress at 20 mM.
IRIS Cnr arrow_drop_down Flore (Florence Research Repository)Article . 2024License: CC BY NC SAData sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1511335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Flore (Florence Research Repository)Article . 2024License: CC BY NC SAData sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1511335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Fimbres-Acedo Yenitze Elizabeth; Traversari Silvia; Cacini Sonia; Costamagna Giulia; +3 AuthorsFimbres-Acedo Yenitze Elizabeth; Traversari Silvia; Cacini Sonia; Costamagna Giulia; Ginepro Marco; Massa; Daniele;handle: 20.500.14243/459923 , 2318/1887243
Low nutrient and high pH of circulating water represent two of the main issues to overcome for a successful combination of aquaculture and hydroponics in aquaponics offering a sustainable and circular economy solution for vegetable production. The purpose of this study was to screen the tolerance of four herbs to high pH and low nutrient concentration in hydroponics, i.e., green and red basils, mint, and rocket salad, with a focus on plant yield and nutraceutical aspects. Results highlighted green basil as the most tolerant species to low nutrient and high pH conditions followed by mint. On the contrary, negative effects from high pH and low nutrient were reported on red basil and especially rocket salad, which strongly affect their marketability parameters. Rocket salad fresh biomass was more than halved under the combination of high pH and low nutrients. Results on green and red basil showed the importance of testing the tolerance to these agronomic conditions at both species and variety levels. Despite the reduction in biomass, leaf pigments were not influenced by high pH and low nutrients and therefore can be considered parameters of minor importance for the evaluation of these species. In conclusion, the tolerance of green basil and mint to high pH and low nutrients under hydroponic conditions has been highlighted. Further investigation coupled with fish farming will be able to reinforce the convenience of using these species for aquaponics.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/1/41/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13010041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/1/41/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13010041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Fimbres-Acedo Yenitze Elizabeth; Traversari Silvia; Cacini Sonia; Costamagna Giulia; +3 AuthorsFimbres-Acedo Yenitze Elizabeth; Traversari Silvia; Cacini Sonia; Costamagna Giulia; Ginepro Marco; Massa; Daniele;handle: 20.500.14243/459923 , 2318/1887243
Low nutrient and high pH of circulating water represent two of the main issues to overcome for a successful combination of aquaculture and hydroponics in aquaponics offering a sustainable and circular economy solution for vegetable production. The purpose of this study was to screen the tolerance of four herbs to high pH and low nutrient concentration in hydroponics, i.e., green and red basils, mint, and rocket salad, with a focus on plant yield and nutraceutical aspects. Results highlighted green basil as the most tolerant species to low nutrient and high pH conditions followed by mint. On the contrary, negative effects from high pH and low nutrient were reported on red basil and especially rocket salad, which strongly affect their marketability parameters. Rocket salad fresh biomass was more than halved under the combination of high pH and low nutrients. Results on green and red basil showed the importance of testing the tolerance to these agronomic conditions at both species and variety levels. Despite the reduction in biomass, leaf pigments were not influenced by high pH and low nutrients and therefore can be considered parameters of minor importance for the evaluation of these species. In conclusion, the tolerance of green basil and mint to high pH and low nutrients under hydroponic conditions has been highlighted. Further investigation coupled with fish farming will be able to reinforce the convenience of using these species for aquaponics.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/1/41/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13010041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/1/41/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13010041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:International Society for Horticultural Science (ISHS) Daniele Massa; Sonia Cacini; S. Cannazzaro; Catello Pane; S. Di Lonardo; F. Gambineri; Silvia Traversari;handle: 20.500.14243/396190
Coconut coir dust is finding broad application in the ornamental sector as peat substitute. However, deeper investigations are needed since its performances are variable and not always optimal for different plant species and growing conditions. The use of non-thermal plasma (NTP) in re-circulating nutrient solution appears a promising and sustainable strategy to enhance crop protection, decrease the use of sanitizers and pesticides, and increase yield and quality of ornamental productions. Nevertheless, only a few examples of NTP application on containerized crops under operational growing conditions are available, particularly in combination with different substrates and fertigation regimes. In this work the application of NTP was tested on the nutrient solution used for the production of Ranunculus asiaticus potted plants. The effect was assessed in growing plants using two substrates (both 50:50 v v-1): 1) peat:perlite, and 2) coconut coir dust:perlite, and with two levels of fertilization. Plants grown on coconut coir dust had lower total biomass and flower number. On the other hand, in terms of biomass and tissue nutrient content, R. asiaticus plants developeded better at lower nutrient concentration than at the standard nutrient solution. NTP treatment increased the green biomass while did not improve the flower production. NTP-based sanitizing effects on the root zone, where the number of colony-forming units of fungi was significantly reduced, were observed only in presence of the standard nutrient solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17660/actahortic.2021.1317.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17660/actahortic.2021.1317.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:International Society for Horticultural Science (ISHS) Daniele Massa; Sonia Cacini; S. Cannazzaro; Catello Pane; S. Di Lonardo; F. Gambineri; Silvia Traversari;handle: 20.500.14243/396190
Coconut coir dust is finding broad application in the ornamental sector as peat substitute. However, deeper investigations are needed since its performances are variable and not always optimal for different plant species and growing conditions. The use of non-thermal plasma (NTP) in re-circulating nutrient solution appears a promising and sustainable strategy to enhance crop protection, decrease the use of sanitizers and pesticides, and increase yield and quality of ornamental productions. Nevertheless, only a few examples of NTP application on containerized crops under operational growing conditions are available, particularly in combination with different substrates and fertigation regimes. In this work the application of NTP was tested on the nutrient solution used for the production of Ranunculus asiaticus potted plants. The effect was assessed in growing plants using two substrates (both 50:50 v v-1): 1) peat:perlite, and 2) coconut coir dust:perlite, and with two levels of fertilization. Plants grown on coconut coir dust had lower total biomass and flower number. On the other hand, in terms of biomass and tissue nutrient content, R. asiaticus plants developeded better at lower nutrient concentration than at the standard nutrient solution. NTP treatment increased the green biomass while did not improve the flower production. NTP-based sanitizing effects on the root zone, where the number of colony-forming units of fungi was significantly reduced, were observed only in presence of the standard nutrient solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17660/actahortic.2021.1317.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17660/actahortic.2021.1317.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Belgium, Italy, ItalyPublisher:Wiley Barbara De Meester1; 2; Rebecca Van Acker1; 2; Marlies Wouters1; 2; Silvia Traversari3; 4; Marijke Steenackers5; Jenny Neukermans1; 2; Frank Van Breusegem1; 2; Annabelle Déjardin6; Gilles Pilate6; Wout Boerjan1; 2;Summary Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse‐grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol‐specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1‐yr‐old hpCAD wood had 10% less lignin, 3‐yr‐old hpCAD wood had wild‐type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1‐yr‐old and 3‐yr‐old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD‐deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
IRIS Cnr arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Belgium, Italy, ItalyPublisher:Wiley Barbara De Meester1; 2; Rebecca Van Acker1; 2; Marlies Wouters1; 2; Silvia Traversari3; 4; Marijke Steenackers5; Jenny Neukermans1; 2; Frank Van Breusegem1; 2; Annabelle Déjardin6; Gilles Pilate6; Wout Boerjan1; 2;Summary Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse‐grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol‐specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1‐yr‐old hpCAD wood had 10% less lignin, 3‐yr‐old hpCAD wood had wild‐type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1‐yr‐old and 3‐yr‐old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD‐deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.
IRIS Cnr arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down New PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Silvia Traversari; Sonia Cacini; Angelica Galieni; Beatrice Nesi; Nicola Nicastro; Catello Pane;doi: 10.3390/su13073707
handle: 20.500.14243/515563
Ornamental plant production constitutes an important sector of the horticultural industry worldwide and fungal infections, that dramatically affect the aesthetic quality of plants, can cause serious economic and crop losses. The need to reduce the use of pesticides for controlling fungal outbreaks requires the development of new sustainable strategies for pathogen control. In particular, early and accurate large-scale detection of occurring symptoms is critical to face the ambitious challenge of an effective, energy-saving, and precise disease management. Here, the new trends in digital-based detection and available tools to treat fungal infections are presented in comparison with conventional practices. Recent advances in molecular biology tools, spectroscopic and imaging technologies and fungal risk models based on microclimate trends are examined. The revised spectroscopic and imaging technologies were tested through a case study on rose plants showing important fungal diseases (i.e., spot spectroscopy, hyperspectral, multispectral, and thermal imaging, fluorescence sensors). The final aim was the examination of conventional practices and current e-tools to gain the early detection of plant diseases, the identification of timing and spacing for their proper management, reduction in crop losses through environmentally friendly and sustainable production systems. Moreover, future perspectives for enhancing the integration of all these approaches are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Silvia Traversari; Sonia Cacini; Angelica Galieni; Beatrice Nesi; Nicola Nicastro; Catello Pane;doi: 10.3390/su13073707
handle: 20.500.14243/515563
Ornamental plant production constitutes an important sector of the horticultural industry worldwide and fungal infections, that dramatically affect the aesthetic quality of plants, can cause serious economic and crop losses. The need to reduce the use of pesticides for controlling fungal outbreaks requires the development of new sustainable strategies for pathogen control. In particular, early and accurate large-scale detection of occurring symptoms is critical to face the ambitious challenge of an effective, energy-saving, and precise disease management. Here, the new trends in digital-based detection and available tools to treat fungal infections are presented in comparison with conventional practices. Recent advances in molecular biology tools, spectroscopic and imaging technologies and fungal risk models based on microclimate trends are examined. The revised spectroscopic and imaging technologies were tested through a case study on rose plants showing important fungal diseases (i.e., spot spectroscopy, hyperspectral, multispectral, and thermal imaging, fluorescence sensors). The final aim was the examination of conventional practices and current e-tools to gain the early detection of plant diseases, the identification of timing and spacing for their proper management, reduction in crop losses through environmentally friendly and sustainable production systems. Moreover, future perspectives for enhancing the integration of all these approaches are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13073707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Frontiers Media SA Mirko Sodini; Silvia Traversari; Sonia Cacini; Irene Gonfiotti; Anna Lenzi; Daniele Massa;IntroductionThe non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.MethodsThe nutrient solution supplied to a red coloured variety of rocket salad [Diplotaxis tenuifolia (L.) DC. ‘Dragon’s Tongue’] grown in a hydroponic close loop system was treated with NTP. Low, medium, and high concentrations of N (i.e., 1, 10, and 20 mM) of the nutrient solution were tested in control (no NTP) or NTP treated conditions in two consecutive growing cycles. Results and discussionResults highlighted a N-dependent effect of NTP treatment showing a biomass stimulation at 10 mM N while negative effects of this technique at 1 and 20mM N. The biomass boosting of NTP found at 10 mMN coupled with an increase in K and Zn showing positive effects also on the nutraceutical aspects. Interestingly, different mechanisms seemed to be involved in the detrimental effects found at low and high N levels, i.e., a lower sensibility to N deficiency at 1 mM and a synergic negative effect of N and NTP in promoting oxidative stress at 20 mM.
IRIS Cnr arrow_drop_down Flore (Florence Research Repository)Article . 2024License: CC BY NC SAData sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1511335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Flore (Florence Research Repository)Article . 2024License: CC BY NC SAData sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1511335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 ItalyPublisher:Frontiers Media SA Mirko Sodini; Silvia Traversari; Sonia Cacini; Irene Gonfiotti; Anna Lenzi; Daniele Massa;IntroductionThe non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.MethodsThe nutrient solution supplied to a red coloured variety of rocket salad [Diplotaxis tenuifolia (L.) DC. ‘Dragon’s Tongue’] grown in a hydroponic close loop system was treated with NTP. Low, medium, and high concentrations of N (i.e., 1, 10, and 20 mM) of the nutrient solution were tested in control (no NTP) or NTP treated conditions in two consecutive growing cycles. Results and discussionResults highlighted a N-dependent effect of NTP treatment showing a biomass stimulation at 10 mM N while negative effects of this technique at 1 and 20mM N. The biomass boosting of NTP found at 10 mMN coupled with an increase in K and Zn showing positive effects also on the nutraceutical aspects. Interestingly, different mechanisms seemed to be involved in the detrimental effects found at low and high N levels, i.e., a lower sensibility to N deficiency at 1 mM and a synergic negative effect of N and NTP in promoting oxidative stress at 20 mM.
IRIS Cnr arrow_drop_down Flore (Florence Research Repository)Article . 2024License: CC BY NC SAData sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1511335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Flore (Florence Research Repository)Article . 2024License: CC BY NC SAData sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1511335&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu