Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
13 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: Schneider, Ingo A.; orcid Freunberger, Stefan;
    Freunberger, Stefan
    ORCID
    Harvested from ORCID Public Data File

    Freunberger, Stefan in OpenAIRE
    orcid Kramer, Denis;
    Kramer, Denis
    ORCID
    Harvested from ORCID Public Data File

    Kramer, Denis in OpenAIRE
    Wokaun, Alexander; +1 Authors

    Our experimental results shown here disprove that finite diffusion can generally be assumed in ac impedance models for H-2/air-polymer electrolyte fuel cells (PEFCs) to account for the diffusive transport of oxygen through the gas diffusion layer (GDL) toward the air electrode. It is shown that the amplitude of the oxygen concentration oscillation created as a consequence of superimposed ac current at the air electrode is not zero at the channel/GDL interface but extends into the gas channels, at least below modulation frequencies of f(mod)=10 Hz. By this, sinusoidal oxygen-concentration oscillations within the cathode gas channels are excited locally along the flow field. Due to the forced air convection in the cathode flow-field channels, a coupling via the gas phase occurs downstream of the flow field. The coupling strongly affects the local and by this the overall impedance response of the cell and evokes the formation of a low-frequency arc in H-2/air-PEFC impedance spectra. Based on the experimental results, a qualitative model is presented explaining the local impedance response of a segmented 200 cm(2) H-2/air PEFC

    addClaim
    130
    citations130
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: Alexander Wokaun; orcid Stefan Freunberger;
    Stefan Freunberger
    ORCID
    Harvested from ORCID Public Data File

    Stefan Freunberger in OpenAIRE
    orcid Felix N. Büchi;
    Felix N. Büchi
    ORCID
    Harvested from ORCID Public Data File

    Felix N. Büchi in OpenAIRE

    A previously developed mathematical model for water management and current density distribution in a polymer electrolyte fuel cell (PEFCs) is employed to investigate the effects of cooling strategies on cell performance. The model describes a two-dimensional slice through the cell along the channels and through the entire cell sandwich including the coolant channels and the bipolar plate. Arbitrary flow arrangements of fuel, oxidant, and coolant stream directions can be described. Due to the serious impact of temperature on all processes in the PEFC, both the relative direction of the coolant stream to the gas streams and its mass flow turns out to significantly affect the cell performance. Besides influencing the electrochemical reaction and all kinds of mass transfer temperature, variations predominantly alter the local membrane hydration distribution and subseqently its conductivity.

    addClaim
    15
    citations15
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Freunberger, Stefan A.;
    Freunberger, Stefan A.
    ORCID
    Harvested from ORCID Public Data File

    Freunberger, Stefan A. in OpenAIRE

    Redox mediators facilitate the oxidation of the highly insulating discharge product in metal–oxygen batteries during recharge and offer opportunities to achieve high reversible capacities. Now a design principle for selecting redox mediators that can recharge the batteries more efficiently is suggested.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Energy
    Article . 2016 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    Nature Energy
    Article
    License: Springer Nature TDM
    Data sources: Sygma
    addClaim
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Energy
      Article . 2016 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      Nature Energy
      Article
      License: Springer Nature TDM
      Data sources: Sygma
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Riccardo Spezia;
    Riccardo Spezia
    ORCID
    Harvested from ORCID Public Data File

    Riccardo Spezia in OpenAIRE
    Aleksej Samojlov; Nika Mahne; orcid Christian Prehal;
    Christian Prehal
    ORCID
    Harvested from ORCID Public Data File

    Christian Prehal in OpenAIRE
    +9 Authors

    Disproportionation of superoxide to peroxide and O2 generates the highly reactive singlet O2, which needs to be avoided for highly reversible metal–O2 batteries.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy & Environmental Science
    Article . 2019 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy & Environmental Science
    Article
    License: CC BY NC
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    HAL-UPMC
    Article . 2019
    Data sources: HAL-UPMC
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    HAL AMU
    Article . 2019
    Data sources: HAL AMU
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environmental Science
    Article . 2019 . Peer-reviewed
    addClaim
    Access Routes
    Green
    hybrid
    129
    citations129
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy & Environmental Science
      Article . 2019 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy & Environmental Science
      Article
      License: CC BY NC
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      HAL-UPMC
      Article . 2019
      Data sources: HAL-UPMC
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      HAL AMU
      Article . 2019
      Data sources: HAL AMU
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environmental Science
      Article . 2019 . Peer-reviewed
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Matthias Papra; Alexander Wokaun; orcid Stefan Freunberger;
    Stefan Freunberger
    ORCID
    Harvested from ORCID Public Data File

    Stefan Freunberger in OpenAIRE
    orcid Felix N. Büchi;
    Felix N. Büchi
    ORCID
    Harvested from ORCID Public Data File

    Felix N. Büchi in OpenAIRE
    +1 Authors

    Propagation of performance changes to adjacent cells in polymer electrolyte fuel cell stacks is studied by means of voltage monitoring and local current density measurements in peripheral cells of the stack. A technical fuel cell stack has been modified by implementing two independent reactant and coolant supplies in order to deliberately change the performance of one cell (anomalous cell) and study the coupling phenomena to adjacent cells (coupling cells), while keeping the working conditions of the later cell-group unaltered. Two anomalies are studied: (i) air starvation and (ii) thermal anomaly, in a single anomalous cell in the stack and their coupling to adjacent cells. The results have shown that anomalies inducing considerable changes in the local current density of the anomalous cell (such as air starvation) propagate to adjacent cells affecting their performance. The propagation of local current density changes takes place via the common bipolar plate due to its finite thickness and in-plane conductivity. Consequently, anomalies which do not strongly influence the local current density distribution (such as a thermal anomaly under the studied working conditions) do not propagate to adjacent cells.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Stefan Freunberger;
    Stefan Freunberger
    ORCID
    Harvested from ORCID Public Data File

    Stefan Freunberger in OpenAIRE
    orcid Ilie Hanzu;
    Ilie Hanzu
    ORCID
    Harvested from ORCID Public Data File

    Ilie Hanzu in OpenAIRE
    Andreas Dunst; Viktor Epp; +1 Authors

    Conductivity spectroscopy and 7Li spin-locking NMR relaxometry reveal enhanced ion dynamics in nanocrystalline Li2O2 prepared by high-energy ball milling.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy & Environment...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy & Environmental Science
    Article
    License: CC BY
    Data sources: UnpayWall
    Energy & Environmental Science
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    addClaim
    102
    citations102
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy & Environment...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy & Environmental Science
      Article
      License: CC BY
      Data sources: UnpayWall
      Energy & Environmental Science
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Freunberger, Stefan A.;
    Freunberger, Stefan A.
    ORCID
    Harvested from ORCID Public Data File

    Freunberger, Stefan A. in OpenAIRE

    Beyond-intercalation batteries promise a step-change in energy storage compared to intercalation based lithium- and sodium-ion batteries. However, only performance metrics that include all cell components and operation parameters can tell whether a true advance over intercalation batteries has been achieved. 2 Figures

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nature Energy
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Energy
    Article . 2017 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    https://dx.doi.org/10.48550/ar...
    Article . 2020
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    Nature Energy
    Article . 2017 . Peer-reviewed
    Nature Energy
    Article
    License: Springer Nature TDM
    Data sources: Sygma
    addClaim
    Access Routes
    Green
    bronze
    76
    citations76
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nature Energy
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Energy
      Article . 2017 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      https://dx.doi.org/10.48550/ar...
      Article . 2020
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      Nature Energy
      Article . 2017 . Peer-reviewed
      Nature Energy
      Article
      License: Springer Nature TDM
      Data sources: Sygma
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: A. Reiner; orcid Felix N. Büchi;
    Felix N. Büchi
    ORCID
    Harvested from ORCID Public Data File

    Felix N. Büchi in OpenAIRE
    orcid Stefan Freunberger;
    Stefan Freunberger
    ORCID
    Harvested from ORCID Public Data File

    Stefan Freunberger in OpenAIRE
    Marco Santis;

    Polymer electrolyte fuel cells (PE fuel cells) working with air at low stoichiometries (<2.0) and standard electrochemical components show a high degree of inhomogeneity in the current density distribution over the active area. An inhomogeneous current density distribution leads to a non-uniform utilization of the active area, which could negatively affect the time of life of the cells. Furthermore, it is also believed to lower cell performance. In this work, the homogenization of the current density, realized by means of tailored cathodes with along-the-air-channel redistributed catalyst loadings, is investigated. The air stoichiometry range for which a homogenization of the current density is achieved depends upon the gradient with which the catalyst is redistributed along the air channel. A gentle increasing catalyst loading profile homogenizes the current density at relatively higher air stoichiometries, while a steeper profile is suited better for lower air stoichiometries. The results show that a homogenization of the current density by means of redistributed catalyst loading has negative effects on cell performance. Model calculations corroborate the experimental findings on homogenization of the current density and deliver an explanation for the decrease in cell performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrochimica Acta
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    32
    citations32
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrochimica Acta
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: orcid Stefan Freunberger;
    Stefan Freunberger
    ORCID
    Harvested from ORCID Public Data File

    Stefan Freunberger in OpenAIRE
    Marco Santis; orcid Felix N. Büchi;
    Felix N. Büchi
    ORCID
    Harvested from ORCID Public Data File

    Felix N. Büchi in OpenAIRE
    Ingo A. Schneider; +1 Authors

    A quasi-two-dimensional, along-the-channel mass and heat-transfer model for a proton exchange membrane fuel cell (PEFC) is described and validated against experimental current distribution data. The model is formulated ina 1 + 1 dimensional manner, i.e., local transport phenomena are treated one-dimensional in through-plane direction and coupled in-plane by convective transport in the gas and coolant channels. Thus, a two-dimensional slice running through the repetitive unit of a cell from the anode channel via membrane-electrode assembly (MEA) and cathode channel to the coolant channel and from inlet to outlet is modeled. The aim of the work is to elucidate the influence of operating conditions such as feed gas humidities and stoichiometric ratios on the along-the-channel current density distribution and to identify the distinct underlying voltage loss mechanisms. Furthermore, a complicated technical flow field is modeled by a combination of co- and counterflow subdomains and compared with experimental current densities.

    addClaim
    53
    citations53
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: orcid Felix N. Büchi;
    Felix N. Büchi
    ORCID
    Harvested from ORCID Public Data File

    Felix N. Büchi in OpenAIRE
    Alexander Wokaun; orcid Nedjib Djilali;
    Nedjib Djilali
    ORCID
    Harvested from ORCID Public Data File

    Nedjib Djilali in OpenAIRE
    Ingo A. Schneider; +2 Authors

    Cell interaction phenomena in polymer electrolyte fuel cell stacks that arise from imbalance between adjacent cells are investigated in detail experimentally and theoretically. A specialized two-cell stack with advanced localized diagnostics was developed and used to analyze the mechanism and effect of cell-to-cell coupling as a result of operationally relevant variations in reactant feed flow. Contributions to overall and local voltage changes with respect to uniformly operated cells are scrutinized. Unequal operation of the cells causes in-plane current in the bipolar plate to redistribute current and result in inhomogeneous polarization. Both increasing and decreasing polarization along the air-flow path reduces cell power as compared to isopotential operation. A two-dimensional model based on a commercial computational fluid dynamics code is used to back and extend the experimental results to more general cases. Furthermore, the experimental setup presented allowed for the first time to perform simultaneous localized electrochemical impedance spectroscopy beyond the single-cell level. The mechanism of mutual cell interaction on local and integral spectra is revealed. Results show that virtually identical operation of the cells is essential to obtain meaningful integral spectra.

    addClaim
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph