Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hyonsoo Joo; Hyoung Kyu Yoon; Yong Il Hwang; Sang Hyuk Kim; +6 Authors

    The Lancet Commissions on COPD recommended a new classification based on five main risk factors. Patients with COPD were prospectively enrolled in a Korean COPD subgroup study cohort between April 2012 and June 2022. Patients were classified according to the etiologies (Type 1: Genetically determined (COPD-G), Type 2: Abnormal lung development (COPD-D), Type 3: Infections (COPD-I), Type 4: Cigarette smoking (COPD-C), Type 5: Biomass and pollution (COPD-P)). The database enrolled 3476 patients. Among 3392 patients, 52 (2 %), 1339 (39 %), 2930 (86 %), and 2221 (65 %) were compatible with type 2 (COPD-D), 3 (COPD-I), 4 (COPD-C), and 5 (COPD-P), respectively. Most patients (71 %, 2405) had multiple risk factors contributing to their COPD. However, 93, 712, and 182 patients had only type 3 (COPD-I), 4 (COPD-C), and 5 (COPD-P), respectively. Type 3 (COPD-I) only patients were significantly younger, more often female, and had lower lung function. Both the rate and frequency of severe exacerbations were significantly higher in type 3 (COPD-I) only patients (p = 0.038 and p = 0.048, respectively). Compared with type 5 (COPD-P) only, type 3 (COPD-I) only was significantly associated with the risk of severe exacerbation (Odds ratio, 5.7 [95 % CI, 1.0-32.4]; P = 0.049, incident rate ratio, 8.7 [95 % CI, 1.7-44.0]; P = 0.009). Many patients were affected by multiple factors. Therefore, it is important to consider not only smoking history, but also other potential risk factors when evaluating patients with COPD. Further research is needed to explore the implications of this new COPD classification system for clinical practice and treatment strategies.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Respiratory Medicinearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Respiratory Medicine
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Respiratory Medicinearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Respiratory Medicine
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dean E. Schraufnagel; John R. Balmes; Sara De Matteis; Barbara Hoffman; +6 Authors

    Air pollution is a grave risk to human health that affects nearly everyone in the world and nearly every organ in the body. Fortunately, it is largely a preventable risk. Reducing pollution at its source can have a rapid and substantial impact on health. Within a few weeks, respiratory and irritation symptoms, such as shortness of breath, cough, phlegm, and sore throat, disappear; school absenteeism, clinic visits, hospitalizations, premature births, cardiovascular illness and death, and all-cause mortality decrease significantly. The interventions are cost-effective. Reducing factors causing air pollution and climate change have strong cobenefits. Although regions with high air pollution have the greatest potential for health benefits, health improvements continue to be associated with pollution decreases even below international standards. The large response to and short time needed for benefits of these interventions emphasize the urgency of improving global air quality and the importance of increasing efforts to reduce pollution at local levels.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of the American Thoracic Society
    Article . 2019 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    123
    citations123
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hyonsoo Joo; Hyoung Kyu Yoon; Yong Il Hwang; Sang Hyuk Kim; +6 Authors

    The Lancet Commissions on COPD recommended a new classification based on five main risk factors. Patients with COPD were prospectively enrolled in a Korean COPD subgroup study cohort between April 2012 and June 2022. Patients were classified according to the etiologies (Type 1: Genetically determined (COPD-G), Type 2: Abnormal lung development (COPD-D), Type 3: Infections (COPD-I), Type 4: Cigarette smoking (COPD-C), Type 5: Biomass and pollution (COPD-P)). The database enrolled 3476 patients. Among 3392 patients, 52 (2 %), 1339 (39 %), 2930 (86 %), and 2221 (65 %) were compatible with type 2 (COPD-D), 3 (COPD-I), 4 (COPD-C), and 5 (COPD-P), respectively. Most patients (71 %, 2405) had multiple risk factors contributing to their COPD. However, 93, 712, and 182 patients had only type 3 (COPD-I), 4 (COPD-C), and 5 (COPD-P), respectively. Type 3 (COPD-I) only patients were significantly younger, more often female, and had lower lung function. Both the rate and frequency of severe exacerbations were significantly higher in type 3 (COPD-I) only patients (p = 0.038 and p = 0.048, respectively). Compared with type 5 (COPD-P) only, type 3 (COPD-I) only was significantly associated with the risk of severe exacerbation (Odds ratio, 5.7 [95 % CI, 1.0-32.4]; P = 0.049, incident rate ratio, 8.7 [95 % CI, 1.7-44.0]; P = 0.009). Many patients were affected by multiple factors. Therefore, it is important to consider not only smoking history, but also other potential risk factors when evaluating patients with COPD. Further research is needed to explore the implications of this new COPD classification system for clinical practice and treatment strategies.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Respiratory Medicinearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Respiratory Medicine
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Respiratory Medicinearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Respiratory Medicine
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Dean E. Schraufnagel; John R. Balmes; Sara De Matteis; Barbara Hoffman; +6 Authors

    Air pollution is a grave risk to human health that affects nearly everyone in the world and nearly every organ in the body. Fortunately, it is largely a preventable risk. Reducing pollution at its source can have a rapid and substantial impact on health. Within a few weeks, respiratory and irritation symptoms, such as shortness of breath, cough, phlegm, and sore throat, disappear; school absenteeism, clinic visits, hospitalizations, premature births, cardiovascular illness and death, and all-cause mortality decrease significantly. The interventions are cost-effective. Reducing factors causing air pollution and climate change have strong cobenefits. Although regions with high air pollution have the greatest potential for health benefits, health improvements continue to be associated with pollution decreases even below international standards. The large response to and short time needed for benefits of these interventions emphasize the urgency of improving global air quality and the importance of increasing efforts to reduce pollution at local levels.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of the American Thoracic Society
    Article . 2019 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    123
    citations123
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph