- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:EC | ENSAR2EC| ENSAR2Enrichi F.; Cattaruzza E.; Finotto T.; Riello P.; Righini G. C.; Trave E.; Vomiero A.;doi: 10.3390/app10062184
handle: 20.500.14243/384325 , 10278/3725307
The optical photoluminescent (PL) emission of Yb3+ ions in the near infrared (NIR) spectral region at about 950–1100 nm has many potential applications, from photovoltaics to lasers and visual devices. However, due to their simple energy-level structure, Yb3+ ions cannot directly absorb UV or visible light, putting serious limits on their use as light emitters. In this paper we describe a broadband and efficient strategy for sensitizing Yb3+ ions by Ag codoping, resulting in a strong 980 nm PL emission under UV and violet-blue light excitation. Yb-doped silica–zirconia–soda glass–ceramic films were synthesized by sol-gel and dip-coating, followed by annealing at 1000 °C. Ag was then introduced by ion-exchange in a molten salt bath for 1 h at 350 °C. Different post-exchange annealing temperatures for 1 h in air at 380 °C and 430 °C were compared to investigate the possibility of migration/aggregation of the metal ions. Studies of composition showed about 1–2 wt% Ag in the exchanged samples, not modified by annealing. Structural analysis reported the stabilization of cubic zirconia by Yb-doping. Optical measurements showed that, in particular for the highest annealing temperature of 430 °C, the potential improvement of the material’s quality, which would increase the PL emission, is less relevant than Ag-aggregation, which decreases the sensitizers number, resulting in a net reduction of the PL intensity. However, all the Ag-exchanged samples showed a broadband Yb3+ sensitization by energy transfer from Ag aggregates, clearly attested by a broad photoluminescence excitation spectra after Ag-exchange, paving the way for applications in various fields, such as solar cells and NIR-emitting devices.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/6/2184/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10062184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/6/2184/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10062184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Royal Society of Chemistry (RSC) Vomiero; Aa; Galstyan; Va; Braga; Aa; Concina; Ia; Brisotto; Mb; Bontempi; Eb; Sberveglieri; Ga;doi: 10.1039/c0ee00485e
handle: 20.500.14243/20548 , 10278/3712356 , 11379/42346
The growth of TiO2 nanotube arrays on plastic flexible substrates is researched. The approach uses anodization of a titanium thick film for obtaining nanotubes directly on poly(ethylene terephthalate) (PET) and Kapton HN substrate. The morphological features of the tubes can be finely tuned by varying the preparation conditions, and tube morphology affects the functional properties of the nanotube array. Crystallization of the anatase phase in nanotubes on Kapton HN substrate is obtained via post growth annealing. The nanotube arrays have been dye-sensitized using the commercial Ru-based N719 dye. The system was tested as photoanode in a flexible dye sensitized solar cell. Photoconversion efficiency of 3.5% was obtained.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00485e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00485e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Binglan Wu; Karim Harrath; Marshet Getaye Sendeku; Tofik Ahmed Shifa; Yuxin Huang; Jing Tai; Fekadu Tsegaye Dajan; Kassa Belay Ibrahim; Xueying Zhan; Zhenxing Wang; Elisa Moretti; Ying Yang; Fengmei Wang; Alberto Vomiero;doi: 10.1002/cey2.70022
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Sweden, ItalyPublisher:Elsevier BV Jlaili, Marwa; Naffouti, Wafa; Jebbari, Neila; Rodríguez-Castellón, Enrique; Kumar, Pawan; Vomiero, Alberto; Moretti, Elisa; Ibrahim, Kassa Belay; Turki-Kamoun, Najoua;handle: 10278/5095448
In this study, unmodified and graphene (G)-modified TiO2–CuO mixed oxide thin films were synthesized via spray pyrolysis, incorporating varying graphene content (y = 2, 4, 6, and 8 at. %). The modified samples were subjected to photocatalytic (Rhodamine B (RhB), Malachite green (MG), Methylene Blue, and Methyl Orange) and photovoltaic performance evaluations. X-ray diffraction (XRD) confirmed the formation of well-crystalline thin films, while X-ray photoelectron spectroscopy (XPS) (XPS) provided insights into the electronic states of Cu, Ti, C, and O elements. After graphene modification, the Cu 2p and Ti 2p spectra exhibited a negative and positive shift, respectively, indicating Cu reduction and Ti oxidation. Optical absorption analysis revealed an increase in band gap energy with higher graphene concentrations, reaching 1.78 eV at 6 at. % graphene content. The as-prepared samples were tested for photocatalytic degradation of organic dyes in polluted water, including Rhodamine B (RhB), Malachite Green (MG), Methylene Blue (MB), and Methyl Orange (MO). The film dropped at 8 at. % graphene demonstrated remarkable photocatalytic efficiency, achieving degradation rates of 90 %, 85 %, 96 %, and 87 % for RhB, MG, MB, and MO, respectively, within 2 h of solar illumination. Furthermore, the application of G-TiO2-CuO as a secondary absorber layer in CZTS solar cells was optimized using Silvaco TCAD software, resulting in an efficiency enhancement from 10.25 % to 15.31 %. These findings highlight the crucial role of graphene modification in enhancing the physical properties of semiconductor materials, making them promising candidates for advanced optoelectronic applications.
Archivio istituziona... arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2025 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2025 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.optmat.2025.116854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2025 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2025 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.optmat.2025.116854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, Sweden, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | GrapheneCore3, EC | CHALLENGESEC| GrapheneCore3 ,EC| CHALLENGESAnastasiia Taranova; Kamran Akbar; Khabib Yusupov; Shujie You; Vincent Polewczyk; Silvia Mauri; Eleonora Balliana; Johanna Rosen; Paolo Moras; Alessandro Gradone; Vittorio Morandi; Elisa Moretti; Alberto Vomiero;AbstractThe combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSbx (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSbx endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSbx thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSbx was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m−2 h−1. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.
IRIS Cnr arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetPublikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42839-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetPublikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42839-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2011Embargo end date: 01 Jan 2011 ItalyPublisher:EDP Sciences Funded by:EC | SPIRITEC| SPIRITCaciolli; Aa b; Mazzocchi; Cc; Capogrosso; Vc; Bemmerer; Dd; Broggini; Ca; Corvisiero; Pe; Costantini; He; Elekes; Zf; Formicola; Ag; Fülöp; Zf; Gervino; Gh; Guglielmetti; Ac; Gustavino; Cg; Gyürky; Gf; Imbriani; Gi; Junker; Mg; Lemut; Ae; Marta; Md; Menegazzo; Ra; Palmerini; Sj; Prati; Pe; Roca; Vi; Rolfs; Ck; Rossi Alvarez; Ca; Somorjai; Ef; Straniero; Ol; Strieder; Fk; Terrasi; Fm; Trautvetter; HPk; Vomiero; An;arXiv: 1107.4514 , http://arxiv.org/abs/1107.4514
handle: 11588/412691 , 20.500.14243/20549 , 2434/161772 , 11567/255805 , 2318/92723
arXiv: 1107.4514 , http://arxiv.org/abs/1107.4514
handle: 11588/412691 , 20.500.14243/20549 , 2434/161772 , 11567/255805 , 2318/92723
The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,��)16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,��)16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106 K. This range includes the 15N(p,��)16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level. 6 pages, 5 figures
Archivio Istituziona... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/0004-6361/201117475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/0004-6361/201117475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 ItalyPublisher:American Vacuum Society Ferroni; Ma; Guidi; Vb; Martinelli; Ga; Roncarati; Ga; Comini; Ec; Sberveglieri; Gc; Vomiero; Ad; Mea; GDd;doi: 10.1116/1.1450594
handle: 20.500.14243/20125 , 11572/55532 , 10278/3712403 , 10278/3712331 , 11379/26397 , 11392/1203073
doi: 10.1116/1.1450594
handle: 20.500.14243/20125 , 11572/55532 , 10278/3712403 , 10278/3712331 , 11379/26397 , 11392/1203073
Achievement of nanosized thin films of titania was achieved by radio-frequency sputtering of a Ti(97%)–Mo(3%) target. Deposition was performed under inert or reactive atmosphere followed by annealing at temperatures up to 800 °C. The resulting layers became more stoichiometric as annealing temperature increased. The small part of Mo proved useful to prevent exaggerated grain coalescence. Reactive sputtering was more effective than inert deposition to achieve a nanograined layer with lowest size (31 nm). Mo segregated at the surface and partially sublimated as MoO3. The layers became n-doped semiconductors and were tested as chemoresistive gas sensors. Good capability to sense ethanol was determined within a range useful for applications. A model was proposed to explain the response to ethanol.
Archivio istituziona... arrow_drop_down Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures Processing Measurement and PhenomenaArticle . 2002 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1116/1.1450594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures Processing Measurement and PhenomenaArticle . 2002 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1116/1.1450594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV L Zur; C Armellini; S Belmokhtar; A Bouajaj; E Cattaruzza; A Chiappini; F Coccetti; M Ferrari; F Gonella; GC Righini; E Trave; A Vomiero; F Enrichi;handle: 20.500.14243/350871 , 11562/1064666
In this paper, the investigation of energy transfer efficiency in Tb3+-Yb3+ co-doped SiO2-HfO2 glass and glassceramic waveguides is presented. Cooperative energy transfer between these two ions allows to cut one UV or 488 nm photon in two 980 nm photons and could have important applications in improving the performance of photovoltaic solar cells. Thin films with different molar concentrations of rare earths, up to a total concentration of 21%, were prepared by a sol-gel route, using dip-coating deposition technique on SiO2 substrates. The ratio between Yb3+ and Tb3+ ions in all the prepared thin films is constant and equal to 4. The energy transfer between Tb3+ and Yb3+ ions in glass and glass-ceramic waveguides shows the higher efficiency for glassceramic with a maximum quantum transfer efficiency of about 190% for the sample containing 19% of rare earths.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.optmat.2018.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.optmat.2018.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, United KingdomPublisher:American Chemical Society (ACS) Funded by:EC | CATALIGHTEC| CATALIGHTIsobel C. Bicket; Gianluigi A. Botton; Yongchang Liu; Congcong Gao; Hongxing Xu; Wei Xie; Changxu Liu; Yifu Yu; Yurui Fang; Alberto Vomiero; Alberto Vomiero; Seyed Shayan Mousavi Masouleh; Emiliano Cortés; Shunping Zhang; Kaili Yao; Stefan A. Maier; Stefan A. Maier; Xi Wang; Rodrigo Berté; Ning Li; Hongyan Liang; Leonardo de S. Menezes; Leonardo de S. Menezes; Haoran Ren; Zhenglong Zhang; Haiyu Wang; Ming Li;Plasmonic nanoparticles are ideal candidates for hot-electron-assisted applications, but their narrow resonance region and limited hotspot number hindered the energy utilization of broadband solar energy. Inspired by tree branches, we designed and chemically synthesized silver fractals, which enable self-constructed hotspots and multiple plasmonic resonances, extending the broadband generation of hot electrons for better matching with the solar radiation spectrum. We directly revealed the plasmonic origin, the spatial distribution, and the decay dynamics of hot electrons on the single-particle level by using ab initio simulation, dark-field spectroscopy, pump-probe measurements, and electron energy loss spectroscopy. Our results show that fractals with acute tips and narrow gaps can support broadband resonances (400-1100 nm) and a large number of randomly distributed hotspots, which can provide unpolarized enhanced near field and promote hot electron generation. As a proof-of-concept, hot-electron-triggered dimerization of p-nitropthiophenol and hydrogen production are investigated under various irradiations, and the promoted hot electron generation on fractals was confirmed with significantly improved efficiency.
CORE arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c03218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c03218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 ItalyPublisher:Elsevier BV Garzella; Ca; Bontempi; Eb; Depero; LEb; Vomiero; Ac; Della Mea; Gc; Sberveglieri; Ga;handle: 20.500.14243/20203 , 11572/49989 , 11572/1577 , 10278/3712315 , 10278/3712333 , 11379/969
Abstract TiO2 and W-doped TiO2 thin films have been obtained by a chemically modified sol–gel technique, that implies hydrolysis and condensation of Titanium(VI) ethoxide (TEOT) (and tungsten(V) ethoxide) in the presence of a polymer dissolved in ethanol. Dopant was added in concentration that led to nominal W/Ti atomic ratio of 5/33 and 10/33. Film deposition by spin-coating was performed onto allumina substrates. Annealing at 500 °C produced nanosized structurally stable oxides films. Structural characterization of these films was made by means of glancing incidence X-ray diffraction (GIXRD). Scanning electron microscopy (SEM) cross-section images were collected and an estimation of the films thickness was obtained. W/Ti atomic ratio was determined by Rutherford back scattering (RBS) analysis. The electrical response towards ethanol and methanol (100–500 ppm) have been tested in the temperature range of 300–500 °C. Doping effects on structural and sensing properties were investigated. A comparison with the previous obtained dip-coated W/TiO2 thin films have been reported.
Sensors and Actuator... arrow_drop_down Sensors and Actuators B ChemicalArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0925-4005(03)00192-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors and Actuator... arrow_drop_down Sensors and Actuators B ChemicalArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0925-4005(03)00192-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:EC | ENSAR2EC| ENSAR2Enrichi F.; Cattaruzza E.; Finotto T.; Riello P.; Righini G. C.; Trave E.; Vomiero A.;doi: 10.3390/app10062184
handle: 20.500.14243/384325 , 10278/3725307
The optical photoluminescent (PL) emission of Yb3+ ions in the near infrared (NIR) spectral region at about 950–1100 nm has many potential applications, from photovoltaics to lasers and visual devices. However, due to their simple energy-level structure, Yb3+ ions cannot directly absorb UV or visible light, putting serious limits on their use as light emitters. In this paper we describe a broadband and efficient strategy for sensitizing Yb3+ ions by Ag codoping, resulting in a strong 980 nm PL emission under UV and violet-blue light excitation. Yb-doped silica–zirconia–soda glass–ceramic films were synthesized by sol-gel and dip-coating, followed by annealing at 1000 °C. Ag was then introduced by ion-exchange in a molten salt bath for 1 h at 350 °C. Different post-exchange annealing temperatures for 1 h in air at 380 °C and 430 °C were compared to investigate the possibility of migration/aggregation of the metal ions. Studies of composition showed about 1–2 wt% Ag in the exchanged samples, not modified by annealing. Structural analysis reported the stabilization of cubic zirconia by Yb-doping. Optical measurements showed that, in particular for the highest annealing temperature of 430 °C, the potential improvement of the material’s quality, which would increase the PL emission, is less relevant than Ag-aggregation, which decreases the sensitizers number, resulting in a net reduction of the PL intensity. However, all the Ag-exchanged samples showed a broadband Yb3+ sensitization by energy transfer from Ag aggregates, clearly attested by a broad photoluminescence excitation spectra after Ag-exchange, paving the way for applications in various fields, such as solar cells and NIR-emitting devices.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/6/2184/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10062184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/6/2184/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10062184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Royal Society of Chemistry (RSC) Vomiero; Aa; Galstyan; Va; Braga; Aa; Concina; Ia; Brisotto; Mb; Bontempi; Eb; Sberveglieri; Ga;doi: 10.1039/c0ee00485e
handle: 20.500.14243/20548 , 10278/3712356 , 11379/42346
The growth of TiO2 nanotube arrays on plastic flexible substrates is researched. The approach uses anodization of a titanium thick film for obtaining nanotubes directly on poly(ethylene terephthalate) (PET) and Kapton HN substrate. The morphological features of the tubes can be finely tuned by varying the preparation conditions, and tube morphology affects the functional properties of the nanotube array. Crystallization of the anatase phase in nanotubes on Kapton HN substrate is obtained via post growth annealing. The nanotube arrays have been dye-sensitized using the commercial Ru-based N719 dye. The system was tested as photoanode in a flexible dye sensitized solar cell. Photoconversion efficiency of 3.5% was obtained.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00485e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00485e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Binglan Wu; Karim Harrath; Marshet Getaye Sendeku; Tofik Ahmed Shifa; Yuxin Huang; Jing Tai; Fekadu Tsegaye Dajan; Kassa Belay Ibrahim; Xueying Zhan; Zhenxing Wang; Elisa Moretti; Ying Yang; Fengmei Wang; Alberto Vomiero;doi: 10.1002/cey2.70022
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Sweden, ItalyPublisher:Elsevier BV Jlaili, Marwa; Naffouti, Wafa; Jebbari, Neila; Rodríguez-Castellón, Enrique; Kumar, Pawan; Vomiero, Alberto; Moretti, Elisa; Ibrahim, Kassa Belay; Turki-Kamoun, Najoua;handle: 10278/5095448
In this study, unmodified and graphene (G)-modified TiO2–CuO mixed oxide thin films were synthesized via spray pyrolysis, incorporating varying graphene content (y = 2, 4, 6, and 8 at. %). The modified samples were subjected to photocatalytic (Rhodamine B (RhB), Malachite green (MG), Methylene Blue, and Methyl Orange) and photovoltaic performance evaluations. X-ray diffraction (XRD) confirmed the formation of well-crystalline thin films, while X-ray photoelectron spectroscopy (XPS) (XPS) provided insights into the electronic states of Cu, Ti, C, and O elements. After graphene modification, the Cu 2p and Ti 2p spectra exhibited a negative and positive shift, respectively, indicating Cu reduction and Ti oxidation. Optical absorption analysis revealed an increase in band gap energy with higher graphene concentrations, reaching 1.78 eV at 6 at. % graphene content. The as-prepared samples were tested for photocatalytic degradation of organic dyes in polluted water, including Rhodamine B (RhB), Malachite Green (MG), Methylene Blue (MB), and Methyl Orange (MO). The film dropped at 8 at. % graphene demonstrated remarkable photocatalytic efficiency, achieving degradation rates of 90 %, 85 %, 96 %, and 87 % for RhB, MG, MB, and MO, respectively, within 2 h of solar illumination. Furthermore, the application of G-TiO2-CuO as a secondary absorber layer in CZTS solar cells was optimized using Silvaco TCAD software, resulting in an efficiency enhancement from 10.25 % to 15.31 %. These findings highlight the crucial role of graphene modification in enhancing the physical properties of semiconductor materials, making them promising candidates for advanced optoelectronic applications.
Archivio istituziona... arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2025 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2025 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.optmat.2025.116854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2025 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2025 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.optmat.2025.116854&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, Sweden, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | GrapheneCore3, EC | CHALLENGESEC| GrapheneCore3 ,EC| CHALLENGESAnastasiia Taranova; Kamran Akbar; Khabib Yusupov; Shujie You; Vincent Polewczyk; Silvia Mauri; Eleonora Balliana; Johanna Rosen; Paolo Moras; Alessandro Gradone; Vittorio Morandi; Elisa Moretti; Alberto Vomiero;AbstractThe combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSbx (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSbx endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSbx thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSbx was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m−2 h−1. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.
IRIS Cnr arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetPublikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42839-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetPublikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42839-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2011Embargo end date: 01 Jan 2011 ItalyPublisher:EDP Sciences Funded by:EC | SPIRITEC| SPIRITCaciolli; Aa b; Mazzocchi; Cc; Capogrosso; Vc; Bemmerer; Dd; Broggini; Ca; Corvisiero; Pe; Costantini; He; Elekes; Zf; Formicola; Ag; Fülöp; Zf; Gervino; Gh; Guglielmetti; Ac; Gustavino; Cg; Gyürky; Gf; Imbriani; Gi; Junker; Mg; Lemut; Ae; Marta; Md; Menegazzo; Ra; Palmerini; Sj; Prati; Pe; Roca; Vi; Rolfs; Ck; Rossi Alvarez; Ca; Somorjai; Ef; Straniero; Ol; Strieder; Fk; Terrasi; Fm; Trautvetter; HPk; Vomiero; An;arXiv: 1107.4514 , http://arxiv.org/abs/1107.4514
handle: 11588/412691 , 20.500.14243/20549 , 2434/161772 , 11567/255805 , 2318/92723
arXiv: 1107.4514 , http://arxiv.org/abs/1107.4514
handle: 11588/412691 , 20.500.14243/20549 , 2434/161772 , 11567/255805 , 2318/92723
The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,��)16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,��)16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106 K. This range includes the 15N(p,��)16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level. 6 pages, 5 figures
Archivio Istituziona... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/0004-6361/201117475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2011License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/0004-6361/201117475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 ItalyPublisher:American Vacuum Society Ferroni; Ma; Guidi; Vb; Martinelli; Ga; Roncarati; Ga; Comini; Ec; Sberveglieri; Gc; Vomiero; Ad; Mea; GDd;doi: 10.1116/1.1450594
handle: 20.500.14243/20125 , 11572/55532 , 10278/3712403 , 10278/3712331 , 11379/26397 , 11392/1203073
doi: 10.1116/1.1450594
handle: 20.500.14243/20125 , 11572/55532 , 10278/3712403 , 10278/3712331 , 11379/26397 , 11392/1203073
Achievement of nanosized thin films of titania was achieved by radio-frequency sputtering of a Ti(97%)–Mo(3%) target. Deposition was performed under inert or reactive atmosphere followed by annealing at temperatures up to 800 °C. The resulting layers became more stoichiometric as annealing temperature increased. The small part of Mo proved useful to prevent exaggerated grain coalescence. Reactive sputtering was more effective than inert deposition to achieve a nanograined layer with lowest size (31 nm). Mo segregated at the surface and partially sublimated as MoO3. The layers became n-doped semiconductors and were tested as chemoresistive gas sensors. Good capability to sense ethanol was determined within a range useful for applications. A model was proposed to explain the response to ethanol.
Archivio istituziona... arrow_drop_down Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures Processing Measurement and PhenomenaArticle . 2002 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1116/1.1450594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures Processing Measurement and PhenomenaArticle . 2002 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1116/1.1450594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV L Zur; C Armellini; S Belmokhtar; A Bouajaj; E Cattaruzza; A Chiappini; F Coccetti; M Ferrari; F Gonella; GC Righini; E Trave; A Vomiero; F Enrichi;handle: 20.500.14243/350871 , 11562/1064666
In this paper, the investigation of energy transfer efficiency in Tb3+-Yb3+ co-doped SiO2-HfO2 glass and glassceramic waveguides is presented. Cooperative energy transfer between these two ions allows to cut one UV or 488 nm photon in two 980 nm photons and could have important applications in improving the performance of photovoltaic solar cells. Thin films with different molar concentrations of rare earths, up to a total concentration of 21%, were prepared by a sol-gel route, using dip-coating deposition technique on SiO2 substrates. The ratio between Yb3+ and Tb3+ ions in all the prepared thin films is constant and equal to 4. The energy transfer between Tb3+ and Yb3+ ions in glass and glass-ceramic waveguides shows the higher efficiency for glassceramic with a maximum quantum transfer efficiency of about 190% for the sample containing 19% of rare earths.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.optmat.2018.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.optmat.2018.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, United KingdomPublisher:American Chemical Society (ACS) Funded by:EC | CATALIGHTEC| CATALIGHTIsobel C. Bicket; Gianluigi A. Botton; Yongchang Liu; Congcong Gao; Hongxing Xu; Wei Xie; Changxu Liu; Yifu Yu; Yurui Fang; Alberto Vomiero; Alberto Vomiero; Seyed Shayan Mousavi Masouleh; Emiliano Cortés; Shunping Zhang; Kaili Yao; Stefan A. Maier; Stefan A. Maier; Xi Wang; Rodrigo Berté; Ning Li; Hongyan Liang; Leonardo de S. Menezes; Leonardo de S. Menezes; Haoran Ren; Zhenglong Zhang; Haiyu Wang; Ming Li;Plasmonic nanoparticles are ideal candidates for hot-electron-assisted applications, but their narrow resonance region and limited hotspot number hindered the energy utilization of broadband solar energy. Inspired by tree branches, we designed and chemically synthesized silver fractals, which enable self-constructed hotspots and multiple plasmonic resonances, extending the broadband generation of hot electrons for better matching with the solar radiation spectrum. We directly revealed the plasmonic origin, the spatial distribution, and the decay dynamics of hot electrons on the single-particle level by using ab initio simulation, dark-field spectroscopy, pump-probe measurements, and electron energy loss spectroscopy. Our results show that fractals with acute tips and narrow gaps can support broadband resonances (400-1100 nm) and a large number of randomly distributed hotspots, which can provide unpolarized enhanced near field and promote hot electron generation. As a proof-of-concept, hot-electron-triggered dimerization of p-nitropthiophenol and hydrogen production are investigated under various irradiations, and the promoted hot electron generation on fractals was confirmed with significantly improved efficiency.
CORE arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c03218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.1c03218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 ItalyPublisher:Elsevier BV Garzella; Ca; Bontempi; Eb; Depero; LEb; Vomiero; Ac; Della Mea; Gc; Sberveglieri; Ga;handle: 20.500.14243/20203 , 11572/49989 , 11572/1577 , 10278/3712315 , 10278/3712333 , 11379/969
Abstract TiO2 and W-doped TiO2 thin films have been obtained by a chemically modified sol–gel technique, that implies hydrolysis and condensation of Titanium(VI) ethoxide (TEOT) (and tungsten(V) ethoxide) in the presence of a polymer dissolved in ethanol. Dopant was added in concentration that led to nominal W/Ti atomic ratio of 5/33 and 10/33. Film deposition by spin-coating was performed onto allumina substrates. Annealing at 500 °C produced nanosized structurally stable oxides films. Structural characterization of these films was made by means of glancing incidence X-ray diffraction (GIXRD). Scanning electron microscopy (SEM) cross-section images were collected and an estimation of the films thickness was obtained. W/Ti atomic ratio was determined by Rutherford back scattering (RBS) analysis. The electrical response towards ethanol and methanol (100–500 ppm) have been tested in the temperature range of 300–500 °C. Doping effects on structural and sensing properties were investigated. A comparison with the previous obtained dip-coated W/TiO2 thin films have been reported.
Sensors and Actuator... arrow_drop_down Sensors and Actuators B ChemicalArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0925-4005(03)00192-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Sensors and Actuator... arrow_drop_down Sensors and Actuators B ChemicalArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0925-4005(03)00192-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu