- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Peili Shi; Tiancai Zhou; Jian Sun; Ge Hou; Ning Zong;pmid: 34392221
The replacement of dominant sedges/grasses with secondary forbs is common in alpine rangelands, but the underlying plant ecological strategies and their relevance to leaf traits and their variabilities of different plant functional groups remain largely unknown. Here, we measured key leaf traits and analyzed the competitor, stress-tolerator and ruderal (CSR) strategies of major species with different functional groups (sedges, grasses and forbs) in an alpine meadow along a degradation gradient on the Tibetan Plateau. Our results indicated that S-selected species were dominant in both non-degraded (C:S:R = 1:95:4%) and severely degraded (C:S:R = 2:87:11%) meadows. However, there was a shift from S- to R-strategy in the communities after rangeland degradation. More specifically, sedges and grasses with a "conservative" strategy maintained stronger S-strategy to tolerate degraded and stressful conditions. In contrast, forbs with an "opportunistic" strategy (increase 9.5% in R-score) tended to adapt to degraded stages. Moreover, 51.1% and 23.9% of the increased R-scores in forbs were accounted by leaf mass per area and specific leaf area, respectively. Generally, higher leaf water and nitrogen contents coupled with larger variations in leaf traits and flexible SR strategies in forbs enabled them to capitalize on lower soil water and nutrient availability. Our findings highlighted that the contrasting strategies of plant species in response to the decrease in available resources might lead to niche expansion of secondary forbs and loss of diversity in the degraded alpine meadow. The emerging alternative stable states in the degraded rangelands might bring about a predicament for rangeland restoration.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Peili Shi; Tiancai Zhou; Jian Sun; Ge Hou; Ning Zong;pmid: 34392221
The replacement of dominant sedges/grasses with secondary forbs is common in alpine rangelands, but the underlying plant ecological strategies and their relevance to leaf traits and their variabilities of different plant functional groups remain largely unknown. Here, we measured key leaf traits and analyzed the competitor, stress-tolerator and ruderal (CSR) strategies of major species with different functional groups (sedges, grasses and forbs) in an alpine meadow along a degradation gradient on the Tibetan Plateau. Our results indicated that S-selected species were dominant in both non-degraded (C:S:R = 1:95:4%) and severely degraded (C:S:R = 2:87:11%) meadows. However, there was a shift from S- to R-strategy in the communities after rangeland degradation. More specifically, sedges and grasses with a "conservative" strategy maintained stronger S-strategy to tolerate degraded and stressful conditions. In contrast, forbs with an "opportunistic" strategy (increase 9.5% in R-score) tended to adapt to degraded stages. Moreover, 51.1% and 23.9% of the increased R-scores in forbs were accounted by leaf mass per area and specific leaf area, respectively. Generally, higher leaf water and nitrogen contents coupled with larger variations in leaf traits and flexible SR strategies in forbs enabled them to capitalize on lower soil water and nutrient availability. Our findings highlighted that the contrasting strategies of plant species in response to the decrease in available resources might lead to niche expansion of secondary forbs and loss of diversity in the degraded alpine meadow. The emerging alternative stable states in the degraded rangelands might bring about a predicament for rangeland restoration.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu