- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Spain, Netherlands, Belgium, Netherlands, Switzerland, Finland, Spain, Italy, Czech Republic, Sweden, Spain, Ireland, Germany, Czech Republic, Germany, AustriaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Inter- and intra-specific..., FWF | Analysis of Norway Spruce..., SNSF | ICOS-CH Phase 2 +7 projectsSNSF| Inter- and intra-specific water-use strategies of European trees: towards a better mechanistic understanding of tree performance during drought and warming ,FWF| Analysis of Norway Spruce Rust-Resistance ,SNSF| ICOS-CH Phase 2 ,SNSF| Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) ,FWF| Conifer radial stem growth in response to drought ,SNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,ANR| FOREPRO ,ANR| ARBRE ,EC| VERIFY ,FWF| Carbon allocation and growth of Scots pineAuthors: Salomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; +80 AuthorsSalomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; Stegehuis, Annemiek I.; Smiljanic, Marko; Poyatos, Rafael; Babst, Flurin; Cienciala, Emil; Fonti, Patrick; Lerink, Bass J.W.; Lindner, Marcus; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Nabuurs, Gert-Jan; van der Maaten, Ernst; von Arx, Georg; Bär, Andreas; Akhmetzyanov, Linar; Balanzategui, Daniel; Bellan, Michal; Bendix, Jörg; Berveiller, Daniel; Blaženec, Miroslav; Čada, Vojtěch; Carraro, Vinicio; Cecchini, Sébastien; Chan, Tommy; Conedera, Marco; Delpierre, Nicolas; Delzon, Sylvain; Ditmarová, Lubica; Doležal, Jiří; Dufrêne, Eric; Edvardsson, Johannes; Ehekircher, Stefan; Forner, Alicia; Frouz, Jan; Ganthaler, Andrea; Gryc, Vladimír; Güney, Aylin; Heinrich, Ingo; Hentschel, Rainer; Janda, Pavel; Ježík, Marek; Kahle, Hans-Peter; Kahle, Hans-Peter; Knüsel, Simon; Krejza, Jan; Kuberski, Łukasz; Kučera, Jiří; Lebourgeois, François; Mikoláš, Martin; Matula, Radim; Mayr, Stefan; Oberhuber, Walter; Obojes, Nikolaus; Obojes, Nikolaus; Osborne, Bruce; Paljakka, Teemu; Plichta, Roman; Rabbel, Inke; Rathgeber, Cyrille B.K.; Salmon, Yann; Saunder, Matthew; Scharnweber, Tobias; Sitková, Zuzana; Stangler, Dominik Florian; Stereńczak, Krzysztof; Stereńczak, Marko; Střelcová, Katarína; Světlík, Jan; Svodoba, Miroslav; Tobin, Brian; Trotsiuk, Volodymyr; Urban, Josef; Valladares Ros, Fernando; Vavrčík, Hanuš; Vejpustková, Monika; Walthert, Lorenz; Wilmking, Martin; Zin, Ewa; Zou, Junliang; Steppe, Kathy;pmid: 35013178
pmc: PMC8748979
AbstractHeatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
SLU publication data... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27579-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 50visibility views 50 download downloads 86 Powered bymore_vert SLU publication data... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27579-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Australia, Austria, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | SUPERB, EC | VERIFY, EC | T-FORCES +2 projectsEC| SUPERB ,EC| VERIFY ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| The End of the Amazon Carbon Sink? (AMSINK)Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Richard A. Houghton; Jingyun Fang; Pekka E. Kauppi; Heather Keith; Werner A. Kurz; Akihiko Ito; Simon L. Lewis; Gert-Jan Nabuurs; Anatoly Shvidenko; Shoji Hashimoto; Bas Lerink; Dmitry Schepaschenko; Andrea Castanho; Daniel Murdiyarso;The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024Full-Text: https://hdl.handle.net/10072/431745Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07602-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 94 citations 94 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024Full-Text: https://hdl.handle.net/10072/431745Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07602-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:USDA Forest Service Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Richard A. Houghton; Jingyun Fang; Pekka E. Kauppi; Heather Keith; Werner A. Kurz; Akihiko Ito; Simon L. Lewis; Gert-Jan Nabuurs; Anatoly Shvidenko; Shoji Hashimoto; Bas Lerink; Dmitry Schepaschenko; Andrea Castanho; Daniel Murdiyarso;Carbon dioxide uptake by terrestrial ecosystems is critical for moderating climate change but the processes involved are challenging to observe, quantify and model. To provide an independent, ground-based assessment of the contribution of forests to terrestrial uptake, we synthesized the best available in situ forest data from boreal, temperate and tropical biomes spanning three decades. This data publication includes regional and country-level estimates of forest areas, carbon stocks and carbon sinks from 1990 to 2020. Data are based on ground measurements of trees from different forests worldwide and specifically include forest areas, forest carbon stocks, forest carbon stock changes of all global forest biomes (including components of living biomass, deadwood, litter, soil and harvested wood product) and formulas used for synthesizing and calculating the data which can be used for reproducing analysis results and graphics. This data publication also provides raw forest inventory data for Sweden, Norway and Finland from 1960 to 2020 which includes total area, increment, growing stock, harvested, harvested residues, and total decrement for all forest land and productive forest lands. Information for all data sources is also included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2737/rds-2023-0051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2737/rds-2023-0051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 France, Spain, Netherlands, Belgium, Netherlands, Switzerland, Finland, Spain, Italy, Czech Republic, Sweden, Spain, Ireland, Germany, Czech Republic, Germany, AustriaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Inter- and intra-specific..., FWF | Analysis of Norway Spruce..., SNSF | ICOS-CH Phase 2 +7 projectsSNSF| Inter- and intra-specific water-use strategies of European trees: towards a better mechanistic understanding of tree performance during drought and warming ,FWF| Analysis of Norway Spruce Rust-Resistance ,SNSF| ICOS-CH Phase 2 ,SNSF| Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) ,FWF| Conifer radial stem growth in response to drought ,SNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,ANR| FOREPRO ,ANR| ARBRE ,EC| VERIFY ,FWF| Carbon allocation and growth of Scots pineAuthors: Salomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; +80 AuthorsSalomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; Stegehuis, Annemiek I.; Smiljanic, Marko; Poyatos, Rafael; Babst, Flurin; Cienciala, Emil; Fonti, Patrick; Lerink, Bass J.W.; Lindner, Marcus; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Nabuurs, Gert-Jan; van der Maaten, Ernst; von Arx, Georg; Bär, Andreas; Akhmetzyanov, Linar; Balanzategui, Daniel; Bellan, Michal; Bendix, Jörg; Berveiller, Daniel; Blaženec, Miroslav; Čada, Vojtěch; Carraro, Vinicio; Cecchini, Sébastien; Chan, Tommy; Conedera, Marco; Delpierre, Nicolas; Delzon, Sylvain; Ditmarová, Lubica; Doležal, Jiří; Dufrêne, Eric; Edvardsson, Johannes; Ehekircher, Stefan; Forner, Alicia; Frouz, Jan; Ganthaler, Andrea; Gryc, Vladimír; Güney, Aylin; Heinrich, Ingo; Hentschel, Rainer; Janda, Pavel; Ježík, Marek; Kahle, Hans-Peter; Kahle, Hans-Peter; Knüsel, Simon; Krejza, Jan; Kuberski, Łukasz; Kučera, Jiří; Lebourgeois, François; Mikoláš, Martin; Matula, Radim; Mayr, Stefan; Oberhuber, Walter; Obojes, Nikolaus; Obojes, Nikolaus; Osborne, Bruce; Paljakka, Teemu; Plichta, Roman; Rabbel, Inke; Rathgeber, Cyrille B.K.; Salmon, Yann; Saunder, Matthew; Scharnweber, Tobias; Sitková, Zuzana; Stangler, Dominik Florian; Stereńczak, Krzysztof; Stereńczak, Marko; Střelcová, Katarína; Světlík, Jan; Svodoba, Miroslav; Tobin, Brian; Trotsiuk, Volodymyr; Urban, Josef; Valladares Ros, Fernando; Vavrčík, Hanuš; Vejpustková, Monika; Walthert, Lorenz; Wilmking, Martin; Zin, Ewa; Zou, Junliang; Steppe, Kathy;pmid: 35013178
pmc: PMC8748979
AbstractHeatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
SLU publication data... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27579-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 50visibility views 50 download downloads 86 Powered bymore_vert SLU publication data... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryRepository of the Czech Academy of SciencesArticle . 2022Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-27579-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Australia, Austria, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | SUPERB, EC | VERIFY, EC | T-FORCES +2 projectsEC| SUPERB ,EC| VERIFY ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| The End of the Amazon Carbon Sink? (AMSINK)Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Richard A. Houghton; Jingyun Fang; Pekka E. Kauppi; Heather Keith; Werner A. Kurz; Akihiko Ito; Simon L. Lewis; Gert-Jan Nabuurs; Anatoly Shvidenko; Shoji Hashimoto; Bas Lerink; Dmitry Schepaschenko; Andrea Castanho; Daniel Murdiyarso;The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024Full-Text: https://hdl.handle.net/10072/431745Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07602-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 94 citations 94 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024Full-Text: https://hdl.handle.net/10072/431745Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07602-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:USDA Forest Service Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Richard A. Houghton; Jingyun Fang; Pekka E. Kauppi; Heather Keith; Werner A. Kurz; Akihiko Ito; Simon L. Lewis; Gert-Jan Nabuurs; Anatoly Shvidenko; Shoji Hashimoto; Bas Lerink; Dmitry Schepaschenko; Andrea Castanho; Daniel Murdiyarso;Carbon dioxide uptake by terrestrial ecosystems is critical for moderating climate change but the processes involved are challenging to observe, quantify and model. To provide an independent, ground-based assessment of the contribution of forests to terrestrial uptake, we synthesized the best available in situ forest data from boreal, temperate and tropical biomes spanning three decades. This data publication includes regional and country-level estimates of forest areas, carbon stocks and carbon sinks from 1990 to 2020. Data are based on ground measurements of trees from different forests worldwide and specifically include forest areas, forest carbon stocks, forest carbon stock changes of all global forest biomes (including components of living biomass, deadwood, litter, soil and harvested wood product) and formulas used for synthesizing and calculating the data which can be used for reproducing analysis results and graphics. This data publication also provides raw forest inventory data for Sweden, Norway and Finland from 1960 to 2020 which includes total area, increment, growing stock, harvested, harvested residues, and total decrement for all forest land and productive forest lands. Information for all data sources is also included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2737/rds-2023-0051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2737/rds-2023-0051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu