- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 1999 SpainPublisher:Elsevier BV Authors: Rubiera González, Fernando; Arenillas de la Puente, Ana; Fuente Alonso, Enrique; Miles, N.; +1 AuthorsRubiera González, Fernando; Arenillas de la Puente, Ana; Fuente Alonso, Enrique; Miles, N.; Pis Martínez, José Juan;handle: 10261/103382
Grinding of a high volatile bituminous coal was performed in three comminution devices: Raymond Mill (RM), Rolls Crusher (RC) and Ball Mill (BM). The pulverised samples were sieved to obtain four particle size fractions, and temperature-programmed combustion (TPC) was used for the evaluation of their combustion behaviour. In addition, three coals of different hardness and rank were mixed in various proportions in order to compare the combustibility characteristics of the binary coal blends with those of the individual coals. The effect of coal blending on grindability was also studied. It was found that grindability was non-additive especially when coals of very different Hardgrove Grindability Index (HGI) were blended. The combustion studies also suggested that there exists an interaction between individual coals when they are burnt as a blend. Work carried out with a financial grant from the European Coal and Steel Community (Project 7220-EA/133). Peer reviewed
Powder Technology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 1999 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0032-5910(99)00158-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 41visibility views 41 download downloads 100 Powered bymore_vert Powder Technology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 1999 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0032-5910(99)00158-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors: López Antón, María Antonia; Ferrera Lorenzo, Nuria; Fuente Alonso, Enrique; Díaz Somoano, Mercedes; +3 AuthorsLópez Antón, María Antonia; Ferrera Lorenzo, Nuria; Fuente Alonso, Enrique; Díaz Somoano, Mercedes; Suárez Ruiz, Isabel; Martínez Tarazona, María Rosa; Ruiz Bobes, Begoña;The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes.
Chemosphere arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2014.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 52visibility views 52 download downloads 108 Powered bymore_vert Chemosphere arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2014.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV W. Saadi; S. Rodríguez-Sánchez; B. Ruiz; S. Souissi-Najar; A. Ouederni; E. Fuente;handle: 10261/175173
An unpublished low-cost industrial biomass waste, pomegranate peel, as alternative and sustainable fuel source was studied. A horizontal tubular furnace of original design for conventional and flash pyrolysis was carried out. The bio-char yields from both processes were similar, but the bio-oil and bio-gas yields were higher in flash pyrolysis, depending on the temperature. The bio-char obtained show that it could be used as a fuel (higher heating values ≥ 28.0 MJ/kg) and as a potential precursor of activated carbon. It was also found that the lower temperature of the flash pyrolysis was, the greater the bio-oil yield (∼53%) and that the higher was, the greater the biogas yield (∼50%). The bio-oil from conventional pyrolysis has a predominantly furanic nature and contained significant amounts of the phenols and benzenes. In contrast, the bio-oil from flash pyrolysis is similar to that of “anthracene oil”, both of them being composed mainly of polycyclic aromatic hydrocarbons. The bio-gas obtained by flash pyrolysis is of a higher quality than that obtained by conventional pyrolysis because it has a lower CO2 content (32.4% vs 66.6%) and higher syngas content (CO + H2) (50.8% vs 26.8%). Flash pyrolysis is better in CH4 production (11.6% vs 4.6%). Peer reviewed
Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 47visibility views 47 download downloads 190 Powered bymore_vert Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Elsevier BV Authors: Ferrera Lorenzo, Nuria; Fuente Alonso, Enrique; Bermúdez Menéndez, José Miguel; Suárez Ruiz, Isabel; +1 AuthorsFerrera Lorenzo, Nuria; Fuente Alonso, Enrique; Bermúdez Menéndez, José Miguel; Suárez Ruiz, Isabel; Ruiz Bobes, Begoña;A comparative study of the pyrolysis of a macroalgae industrial solid waste (algae meal) in an electrical conventional furnace and in a microwave furnace has been carried out. It was found that the chars obtained from both pyrolyses are similar and show good properties for performing as a solid bio-fuel and as a precursor of activated carbon. Bio-oils from conventional pyrolysis have a greater number of phenolic, pyrrole and alkane compounds whereas benzene and pyridine compounds are more predominant in microwave pyrolysis with a major presence of light compounds. The bio-gas fraction from microwave pyrolysis presents a much higher syngas content (H2+CO), and a lower CO2 and CH4 proportion than that obtained by conventional pyrolysis. Yields are similar for both treatments with a slightly higher gas yield in the case of microwave pyrolysis due to the fact that microwave heating favors heterogeneous reactions between the gases and the char.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 53visibility views 53 download downloads 281 Powered bymore_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors: A. Méndez; G. Gascó; B. Ruiz; E. Fuente;Macroalgae wastes from the Agar-Agar industry were used as a feedstock to obtain hydrochars by means of hydrothermal carbonization. The effect of temperature (200 °C and 230 °C) and time (2 h and 6 h) on the yield, higher heating value (HHV) and chemical-morphological-textural properties of the hydrochars was studied. The carbon content and the higher heating value were observed to increase with the hydrothermal carbonization. The hydrochars yields (up to 60%) were much higher than yields obtained using conventional char (27.5-33.5%). The hydrochar obtained at 230 °C and after 6 h showed a HHV of 23.25 MJ/kg, which is similar to that of lignite HHV. The H/C and O/C atomic ratios decreased as a consequence of the dehydration and decarboxilation reactions. Hydrothermal carbonization barely changed the vegetal structure of the macroalgae waste. The hydrochars were found to be essentially meso-macroporous with average pore sizes of up to 110.5 nm.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 204 Powered bymore_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV N. Ferrera-Lorenzo; E. Fuente; I. Suárez-Ruiz; R.R. Gil; B. Ruiz;Abstract A biomass solid waste (algae meal) generated by the industrial production of Agar–Agar was used as a pyrolysis precursor for this work. The optimal pyrolysis conditions for obtaining energy from the fractions generated (char, oil and gas), and for preparing adsorbent materials from the char were established. Chemical analysis of the algae meal showed that its high carbon, hydrogen and nitrogen content together with its low ash content make it a potential precursor of activated carbons. The optimal pyrolysis conditions were selected by means of thermogravimetric analysis and a study of the carbonization process of the algae meal. These conditions were: final temperature: 750 °C; heating rate: 5 °C/min, time at final temperature: 60 min; flow of inert gas (N 2 ): 150 ml/min. The char obtained from the pyrolysis process presents properties that make it suitable as a solid fuel and as a precursor of activated carbon. Analysis of the oil fraction by the chromatographic technique (GC–MS) showed compounds such as phenols, pyrroles and furanes. The gas fraction had a high syngas content enhancing its high heating value.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2013.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2013.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: M. Inguanzo; J.A. Menéndez; Enrique Fuente; J.J. Pis;Abstract Pyrolysis is currently being considered as an alternative method of treating sewage sludge. It yields residual oils and gases, which can be used as fuels, and a solid which can either be burned or physically activated with air or CO 2 . The aim of this work was to study the influence of different pyrolysis conditions (e.g. temperature and heating rate) on the reactivity in air and in CO 2 of carbonaceous materials obtained from these types of residues. An anaerobic sewage sludge produced in a Spanish urban waste water treatment plant, containing 5 wt.% moisture after air-drying, was pyrolyzed in an electrical laboratory furnace under different pyrolysis conditions. Non-isothermal reactivities (up to 1100°C) in air and in CO 2 of the carbonaceous materials obtained after pyrolysis were performed in a thermobalance. The TG and DTG curves obtained from these experiments are discussed.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0165-2370(00)00143-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0165-2370(00)00143-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Perez, Alejandro; González Pérez, Alejandro; Fuente, Enrique; Calvo Prieto, Luis Fernando; +2 AuthorsPerez, Alejandro; González Pérez, Alejandro; Fuente, Enrique; Calvo Prieto, Luis Fernando; Paniagua, Sergio; Ruiz, Begoña;handle: 10261/260861
Cortaderia selloana (CS), is an invasive and exotic species that is generating significant invasive problems in the Iberian Peninsula ecosystems. The objective of this research was to study this plant potential thorough a pyrolytic process helping to reduce its expansion. Stems and leaves were subjected to conventional and flash pyrolysis. These processes were carried out in an original design oven using a 25°C/min heating ramp at a 750°C temperature and during 60 min at the pyrolysis temperature for conventional pyrolysis and with 750°C and 850°C pyrolysis temperatures for flash. Gas-fraction obtained by flash pyrolysis had higher HHV data when compared with conventional ones (~17 MJ/kg vs ~ 5 MJ/kg) due to their less CO2 and higher CO, CH4 and H2. The greater bio-oil yield was obtained for CSS-P (33.58%). The composition of conventional pyrolysis bio-oils had an overbearing of nonaromatic and monoaromatic hydrocarbons nature whereas bio-oils from flash pyrolysis were composed mainly of polycyclic aromatic hydrocarbons. Bio-char fraction was higher in CSL than CSS with HHV similar to lignite and bituminous coals (22.74 to 29.12 MJ/kg). After done the quantification and characterization of the fractions, it was concluded that a possible energetic valorization of Cortaderia selloana biomass was possible.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 55visibility views 55 download downloads 175 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:American Chemical Society (ACS) Authors: Sandra Rodríguez-Sánchez; Begoña Ruiz; David Martínez-Blanco; María Sánchez-Arenillas; +5 AuthorsSandra Rodríguez-Sánchez; Begoña Ruiz; David Martínez-Blanco; María Sánchez-Arenillas; Maria A. Diez; Isabel Suárez-Ruiz; Jose Francisco Marco; Jesus Blanco; Enrique Fuente;handle: 10261/206734 , 10651/53905
The financial support for this work was provided by the Plan Nacional, Ministerio de Economía y Competitividad of Spain: PN (MINECO), under the Project CTM2014-58435-C2-1-R.
ACS Sustainable Chem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefRepositorio Institucional de la Universidad de OviedoArticle . 2019License: CC BY NC NDData sources: Repositorio Institucional de la Universidad de Oviedoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b04141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 54visibility views 54 download downloads 157 Powered bymore_vert ACS Sustainable Chem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefRepositorio Institucional de la Universidad de OviedoArticle . 2019License: CC BY NC NDData sources: Repositorio Institucional de la Universidad de Oviedoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b04141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV B. Ruiz; R.P. Girón; Isabel Suárez-Ruiz; R.R. Gil; Enrique Fuente;Abstract The aim of this research work is to study the influence of an alkaline activating agent on the preparation of adsorbent/catalyst materials from fly ashes derived from the combustion of Eucalyptus Globulus bark in the energy plant of a pulp mill located in Northern Spain. Different fly ash pre-treatments carried out in previous studies had provided a range of precursors with a high content in unburned carbon and good textural properties. The fraction with a grain size larger than 500 μm was selected as it seemed the best precursor for obtaining adsorbent/catalysts materials due to its higher unburned carbon content and better textural properties. This precursor was chemically activated with several alkaline hydroxides and carbonates at different activating agent/precursor weight ratios and under diverse experimental conditions of activation: an activation temperature of from 600 to 900 °C, and a nitrogen flow of 150 and 500 ml min−1. The materials obtained were characterized both chemically and texturally. The results show that it is possible to obtain adsorbent/catalyst materials by chemical activation using a rich-unburned carbon fly ash fraction as precursor (>500 microns). A BET specific surface area of up to 2108 m2 g−1 and total pore volume of 1.120 cm3 g−1 were achieved. KOH and NaOH were found to be the best activating agents. The materials obtained were mainly microporous. In general, the development of mesoporosity was promoted by NaOH chemical activation. The parameters that had the greatest influence on the textural development of the materials were the activating agent/precursor ratio and the final activating temperature.
Microporous and Meso... arrow_drop_down Microporous and Mesoporous MaterialsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2015.01.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Microporous and Meso... arrow_drop_down Microporous and Mesoporous MaterialsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2015.01.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 1999 SpainPublisher:Elsevier BV Authors: Rubiera González, Fernando; Arenillas de la Puente, Ana; Fuente Alonso, Enrique; Miles, N.; +1 AuthorsRubiera González, Fernando; Arenillas de la Puente, Ana; Fuente Alonso, Enrique; Miles, N.; Pis Martínez, José Juan;handle: 10261/103382
Grinding of a high volatile bituminous coal was performed in three comminution devices: Raymond Mill (RM), Rolls Crusher (RC) and Ball Mill (BM). The pulverised samples were sieved to obtain four particle size fractions, and temperature-programmed combustion (TPC) was used for the evaluation of their combustion behaviour. In addition, three coals of different hardness and rank were mixed in various proportions in order to compare the combustibility characteristics of the binary coal blends with those of the individual coals. The effect of coal blending on grindability was also studied. It was found that grindability was non-additive especially when coals of very different Hardgrove Grindability Index (HGI) were blended. The combustion studies also suggested that there exists an interaction between individual coals when they are burnt as a blend. Work carried out with a financial grant from the European Coal and Steel Community (Project 7220-EA/133). Peer reviewed
Powder Technology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 1999 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0032-5910(99)00158-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 41visibility views 41 download downloads 100 Powered bymore_vert Powder Technology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 1999 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0032-5910(99)00158-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors: López Antón, María Antonia; Ferrera Lorenzo, Nuria; Fuente Alonso, Enrique; Díaz Somoano, Mercedes; +3 AuthorsLópez Antón, María Antonia; Ferrera Lorenzo, Nuria; Fuente Alonso, Enrique; Díaz Somoano, Mercedes; Suárez Ruiz, Isabel; Martínez Tarazona, María Rosa; Ruiz Bobes, Begoña;The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes.
Chemosphere arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2014.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 52visibility views 52 download downloads 108 Powered bymore_vert Chemosphere arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2014.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV W. Saadi; S. Rodríguez-Sánchez; B. Ruiz; S. Souissi-Najar; A. Ouederni; E. Fuente;handle: 10261/175173
An unpublished low-cost industrial biomass waste, pomegranate peel, as alternative and sustainable fuel source was studied. A horizontal tubular furnace of original design for conventional and flash pyrolysis was carried out. The bio-char yields from both processes were similar, but the bio-oil and bio-gas yields were higher in flash pyrolysis, depending on the temperature. The bio-char obtained show that it could be used as a fuel (higher heating values ≥ 28.0 MJ/kg) and as a potential precursor of activated carbon. It was also found that the lower temperature of the flash pyrolysis was, the greater the bio-oil yield (∼53%) and that the higher was, the greater the biogas yield (∼50%). The bio-oil from conventional pyrolysis has a predominantly furanic nature and contained significant amounts of the phenols and benzenes. In contrast, the bio-oil from flash pyrolysis is similar to that of “anthracene oil”, both of them being composed mainly of polycyclic aromatic hydrocarbons. The bio-gas obtained by flash pyrolysis is of a higher quality than that obtained by conventional pyrolysis because it has a lower CO2 content (32.4% vs 66.6%) and higher syngas content (CO + H2) (50.8% vs 26.8%). Flash pyrolysis is better in CH4 production (11.6% vs 4.6%). Peer reviewed
Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 47visibility views 47 download downloads 190 Powered bymore_vert Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Elsevier BV Authors: Ferrera Lorenzo, Nuria; Fuente Alonso, Enrique; Bermúdez Menéndez, José Miguel; Suárez Ruiz, Isabel; +1 AuthorsFerrera Lorenzo, Nuria; Fuente Alonso, Enrique; Bermúdez Menéndez, José Miguel; Suárez Ruiz, Isabel; Ruiz Bobes, Begoña;A comparative study of the pyrolysis of a macroalgae industrial solid waste (algae meal) in an electrical conventional furnace and in a microwave furnace has been carried out. It was found that the chars obtained from both pyrolyses are similar and show good properties for performing as a solid bio-fuel and as a precursor of activated carbon. Bio-oils from conventional pyrolysis have a greater number of phenolic, pyrrole and alkane compounds whereas benzene and pyridine compounds are more predominant in microwave pyrolysis with a major presence of light compounds. The bio-gas fraction from microwave pyrolysis presents a much higher syngas content (H2+CO), and a lower CO2 and CH4 proportion than that obtained by conventional pyrolysis. Yields are similar for both treatments with a slightly higher gas yield in the case of microwave pyrolysis due to the fact that microwave heating favors heterogeneous reactions between the gases and the char.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 53visibility views 53 download downloads 281 Powered bymore_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors: A. Méndez; G. Gascó; B. Ruiz; E. Fuente;Macroalgae wastes from the Agar-Agar industry were used as a feedstock to obtain hydrochars by means of hydrothermal carbonization. The effect of temperature (200 °C and 230 °C) and time (2 h and 6 h) on the yield, higher heating value (HHV) and chemical-morphological-textural properties of the hydrochars was studied. The carbon content and the higher heating value were observed to increase with the hydrothermal carbonization. The hydrochars yields (up to 60%) were much higher than yields obtained using conventional char (27.5-33.5%). The hydrochar obtained at 230 °C and after 6 h showed a HHV of 23.25 MJ/kg, which is similar to that of lignite HHV. The H/C and O/C atomic ratios decreased as a consequence of the dehydration and decarboxilation reactions. Hydrothermal carbonization barely changed the vegetal structure of the macroalgae waste. The hydrochars were found to be essentially meso-macroporous with average pore sizes of up to 110.5 nm.
Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 204 Powered bymore_vert Bioresource Technolo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV N. Ferrera-Lorenzo; E. Fuente; I. Suárez-Ruiz; R.R. Gil; B. Ruiz;Abstract A biomass solid waste (algae meal) generated by the industrial production of Agar–Agar was used as a pyrolysis precursor for this work. The optimal pyrolysis conditions for obtaining energy from the fractions generated (char, oil and gas), and for preparing adsorbent materials from the char were established. Chemical analysis of the algae meal showed that its high carbon, hydrogen and nitrogen content together with its low ash content make it a potential precursor of activated carbons. The optimal pyrolysis conditions were selected by means of thermogravimetric analysis and a study of the carbonization process of the algae meal. These conditions were: final temperature: 750 °C; heating rate: 5 °C/min, time at final temperature: 60 min; flow of inert gas (N 2 ): 150 ml/min. The char obtained from the pyrolysis process presents properties that make it suitable as a solid fuel and as a precursor of activated carbon. Analysis of the oil fraction by the chromatographic technique (GC–MS) showed compounds such as phenols, pyrroles and furanes. The gas fraction had a high syngas content enhancing its high heating value.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2013.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2013.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: M. Inguanzo; J.A. Menéndez; Enrique Fuente; J.J. Pis;Abstract Pyrolysis is currently being considered as an alternative method of treating sewage sludge. It yields residual oils and gases, which can be used as fuels, and a solid which can either be burned or physically activated with air or CO 2 . The aim of this work was to study the influence of different pyrolysis conditions (e.g. temperature and heating rate) on the reactivity in air and in CO 2 of carbonaceous materials obtained from these types of residues. An anaerobic sewage sludge produced in a Spanish urban waste water treatment plant, containing 5 wt.% moisture after air-drying, was pyrolyzed in an electrical laboratory furnace under different pyrolysis conditions. Non-isothermal reactivities (up to 1100°C) in air and in CO 2 of the carbonaceous materials obtained after pyrolysis were performed in a thermobalance. The TG and DTG curves obtained from these experiments are discussed.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0165-2370(00)00143-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2001 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0165-2370(00)00143-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors: Perez, Alejandro; González Pérez, Alejandro; Fuente, Enrique; Calvo Prieto, Luis Fernando; +2 AuthorsPerez, Alejandro; González Pérez, Alejandro; Fuente, Enrique; Calvo Prieto, Luis Fernando; Paniagua, Sergio; Ruiz, Begoña;handle: 10261/260861
Cortaderia selloana (CS), is an invasive and exotic species that is generating significant invasive problems in the Iberian Peninsula ecosystems. The objective of this research was to study this plant potential thorough a pyrolytic process helping to reduce its expansion. Stems and leaves were subjected to conventional and flash pyrolysis. These processes were carried out in an original design oven using a 25°C/min heating ramp at a 750°C temperature and during 60 min at the pyrolysis temperature for conventional pyrolysis and with 750°C and 850°C pyrolysis temperatures for flash. Gas-fraction obtained by flash pyrolysis had higher HHV data when compared with conventional ones (~17 MJ/kg vs ~ 5 MJ/kg) due to their less CO2 and higher CO, CH4 and H2. The greater bio-oil yield was obtained for CSS-P (33.58%). The composition of conventional pyrolysis bio-oils had an overbearing of nonaromatic and monoaromatic hydrocarbons nature whereas bio-oils from flash pyrolysis were composed mainly of polycyclic aromatic hydrocarbons. Bio-char fraction was higher in CSL than CSS with HHV similar to lignite and bituminous coals (22.74 to 29.12 MJ/kg). After done the quantification and characterization of the fractions, it was concluded that a possible energetic valorization of Cortaderia selloana biomass was possible.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 55visibility views 55 download downloads 175 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:American Chemical Society (ACS) Authors: Sandra Rodríguez-Sánchez; Begoña Ruiz; David Martínez-Blanco; María Sánchez-Arenillas; +5 AuthorsSandra Rodríguez-Sánchez; Begoña Ruiz; David Martínez-Blanco; María Sánchez-Arenillas; Maria A. Diez; Isabel Suárez-Ruiz; Jose Francisco Marco; Jesus Blanco; Enrique Fuente;handle: 10261/206734 , 10651/53905
The financial support for this work was provided by the Plan Nacional, Ministerio de Economía y Competitividad of Spain: PN (MINECO), under the Project CTM2014-58435-C2-1-R.
ACS Sustainable Chem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefRepositorio Institucional de la Universidad de OviedoArticle . 2019License: CC BY NC NDData sources: Repositorio Institucional de la Universidad de Oviedoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b04141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 54visibility views 54 download downloads 157 Powered bymore_vert ACS Sustainable Chem... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefRepositorio Institucional de la Universidad de OviedoArticle . 2019License: CC BY NC NDData sources: Repositorio Institucional de la Universidad de Oviedoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b04141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV B. Ruiz; R.P. Girón; Isabel Suárez-Ruiz; R.R. Gil; Enrique Fuente;Abstract The aim of this research work is to study the influence of an alkaline activating agent on the preparation of adsorbent/catalyst materials from fly ashes derived from the combustion of Eucalyptus Globulus bark in the energy plant of a pulp mill located in Northern Spain. Different fly ash pre-treatments carried out in previous studies had provided a range of precursors with a high content in unburned carbon and good textural properties. The fraction with a grain size larger than 500 μm was selected as it seemed the best precursor for obtaining adsorbent/catalysts materials due to its higher unburned carbon content and better textural properties. This precursor was chemically activated with several alkaline hydroxides and carbonates at different activating agent/precursor weight ratios and under diverse experimental conditions of activation: an activation temperature of from 600 to 900 °C, and a nitrogen flow of 150 and 500 ml min−1. The materials obtained were characterized both chemically and texturally. The results show that it is possible to obtain adsorbent/catalyst materials by chemical activation using a rich-unburned carbon fly ash fraction as precursor (>500 microns). A BET specific surface area of up to 2108 m2 g−1 and total pore volume of 1.120 cm3 g−1 were achieved. KOH and NaOH were found to be the best activating agents. The materials obtained were mainly microporous. In general, the development of mesoporosity was promoted by NaOH chemical activation. The parameters that had the greatest influence on the textural development of the materials were the activating agent/precursor ratio and the final activating temperature.
Microporous and Meso... arrow_drop_down Microporous and Mesoporous MaterialsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2015.01.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Microporous and Meso... arrow_drop_down Microporous and Mesoporous MaterialsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2015.01.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu