- home
- Advanced Search
- Energy Research
- 13. Climate action
- Energy Research
- 13. Climate action
description Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Funded by:DFGDFGAuthors:Cao, Viet;
Schaffer, Mario;Cao, Viet
Cao, Viet in OpenAIRELicha, Tobias;
Licha, Tobias
Licha, Tobias in OpenAIREAbstract Organic compounds with functional groups susceptible to hydrolysis hold the potential to become thermo-sensitive tracers. To broaden the range of available compound classes for typical temperatures encountered in low enthalpy geothermal reservoirs, the group of carbamates was investigated. The kinetic parameters of eight primary and one secondary carbamate(s) were studied by means of isothermal batch experiments. The influence of several parameters on hydrolysis kinetics was investigated, which included the compound structure, temperature, and pH/pOH. The results demonstrate the possible application of these tracers within a broad range of temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2017.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2017.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Funded by:DFGDFGAuthors:Cao, Viet;
Schaffer, Mario;Cao, Viet
Cao, Viet in OpenAIRELicha, Tobias;
Licha, Tobias
Licha, Tobias in OpenAIREAbstract Organic compounds with functional groups susceptible to hydrolysis hold the potential to become thermo-sensitive tracers. To broaden the range of available compound classes for typical temperatures encountered in low enthalpy geothermal reservoirs, the group of carbamates was investigated. The kinetic parameters of eight primary and one secondary carbamate(s) were studied by means of isothermal batch experiments. The influence of several parameters on hydrolysis kinetics was investigated, which included the compound structure, temperature, and pH/pOH. The results demonstrate the possible application of these tracers within a broad range of temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2017.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2017.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu