- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Cold Spring Harbor Laboratory Authors: Oriol Cabau-Peinado; Marijn Winkelhorst; Rozanne Stroek; Roderick de Kat Angelino; +4 AuthorsOriol Cabau-Peinado; Marijn Winkelhorst; Rozanne Stroek; Roderick de Kat Angelino; Adrie J.J. Straathof; Kunal Masania; Jean Marc Daran; Ludovic Jourdin;SummaryMicrobial electrosynthesis allows the electrochemical upgrading of CO2. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2to even-chain C2-C6 carboxylic acids during 248 days. We demonstrate a 3-fold higher biofilm concentration, volumetric current density, and productivity than the state of the art, up to a new record of -35 kA m-3cathodeand 69 kgCm-3cathodeday-1, at 60-97% and 30-35% faradaic and energy efficiencies, respectively. Most notably, the volumetric productivity resembles those achieved in lab-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale-up the technology.Graphical abstract
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.02.08.579422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.02.08.579422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Cold Spring Harbor Laboratory Authors: Oriol Cabau-Peinado; Marijn Winkelhorst; Rozanne Stroek; Roderick de Kat Angelino; +4 AuthorsOriol Cabau-Peinado; Marijn Winkelhorst; Rozanne Stroek; Roderick de Kat Angelino; Adrie J.J. Straathof; Kunal Masania; Jean Marc Daran; Ludovic Jourdin;SummaryMicrobial electrosynthesis allows the electrochemical upgrading of CO2. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2to even-chain C2-C6 carboxylic acids during 248 days. We demonstrate a 3-fold higher biofilm concentration, volumetric current density, and productivity than the state of the art, up to a new record of -35 kA m-3cathodeand 69 kgCm-3cathodeday-1, at 60-97% and 30-35% faradaic and energy efficiencies, respectively. Most notably, the volumetric productivity resembles those achieved in lab-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale-up the technology.Graphical abstract
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.02.08.579422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.02.08.579422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Guadalupe-Medina, V. (author); Wisselink, H.W. (author); Luttik, M.A.H. (author); De Hulster, E. (author); +3 AuthorsGuadalupe-Medina, V. (author); Wisselink, H.W. (author); Luttik, M.A.H. (author); De Hulster, E. (author); Daran, J.M. (author); Pronk, J.T. (author); Van Maris, A.J.A. (author);Abstract Background Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology. Results A hitherto unexplored strategy to address this redox challenge is the functional expression in yeast of enzymes from autotrophs, thereby enabling the use of CO2 as electron acceptor for NADH reoxidation. Functional expression of the Calvin cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in Saccharomyces cerevisiae led to a 90% reduction of the by-product glycerol and a 10% increase in ethanol production in sugar-limited chemostat cultures on a mixture of glucose and galactose. Co-expression of the Escherichia coli chaperones GroEL and GroES was key to successful expression of CbbM, a form-II Rubisco from the chemolithoautotrophic bacterium Thiobacillus denitrificans in yeast. Conclusions Our results demonstrate functional expression of Rubisco in a heterotrophic eukaryote and demonstrate how incorporation of CO2 as a co-substrate in metabolic engineering of heterotrophic industrial microorganisms can be used to improve product yields. Rapid advances in molecular biology should allow for rapid insertion of this 4-gene expression cassette in industrial yeast strains to improve production, not only of 1st and 2nd generation ethanol production, but also of other renewable fuels or chemicals.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-6-125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 3 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-6-125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Guadalupe-Medina, V. (author); Wisselink, H.W. (author); Luttik, M.A.H. (author); De Hulster, E. (author); +3 AuthorsGuadalupe-Medina, V. (author); Wisselink, H.W. (author); Luttik, M.A.H. (author); De Hulster, E. (author); Daran, J.M. (author); Pronk, J.T. (author); Van Maris, A.J.A. (author);Abstract Background Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology. Results A hitherto unexplored strategy to address this redox challenge is the functional expression in yeast of enzymes from autotrophs, thereby enabling the use of CO2 as electron acceptor for NADH reoxidation. Functional expression of the Calvin cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in Saccharomyces cerevisiae led to a 90% reduction of the by-product glycerol and a 10% increase in ethanol production in sugar-limited chemostat cultures on a mixture of glucose and galactose. Co-expression of the Escherichia coli chaperones GroEL and GroES was key to successful expression of CbbM, a form-II Rubisco from the chemolithoautotrophic bacterium Thiobacillus denitrificans in yeast. Conclusions Our results demonstrate functional expression of Rubisco in a heterotrophic eukaryote and demonstrate how incorporation of CO2 as a co-substrate in metabolic engineering of heterotrophic industrial microorganisms can be used to improve product yields. Rapid advances in molecular biology should allow for rapid insertion of this 4-gene expression cassette in industrial yeast strains to improve production, not only of 1st and 2nd generation ethanol production, but also of other renewable fuels or chemicals.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-6-125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 3 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-6-125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 NetherlandsPublisher:Wiley Funded by:EC | ELOXY, EC | PAcMENEC| ELOXY ,EC| PAcMENPerli, Thomas; Wronska, Anna K.; Ortiz‐Merino, Raúl A.; Pronk, Jack T.; Daran, Jean‐Marc;AbstractChemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B‐group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term “vitamin” is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Yeast arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/yea.3461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 39visibility views 39 download downloads 6 Powered bymore_vert Yeast arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/yea.3461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 NetherlandsPublisher:Wiley Funded by:EC | ELOXY, EC | PAcMENEC| ELOXY ,EC| PAcMENPerli, Thomas; Wronska, Anna K.; Ortiz‐Merino, Raúl A.; Pronk, Jack T.; Daran, Jean‐Marc;AbstractChemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B‐group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term “vitamin” is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Yeast arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/yea.3461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 39visibility views 39 download downloads 6 Powered bymore_vert Yeast arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/yea.3461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Antonius J. A. van Maris; Aldo Tonso; Carlos P. Silva; Marcelo Goulart Dário; Marcelo Goulart Dário; Jean-Marc Daran; Paulo S. Schlölg; Andreas Karoly Gombert; Júlio Cézar A. do Espirito-Santo; Thiago Olitta Basso; Thiago Olitta Basso; Stefan de Kok; Gabriela Muller; Boris U. Stambuk; Boris U. Stambuk; Jack T. Pronk;pmid: 21963484
Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2011.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2011.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Antonius J. A. van Maris; Aldo Tonso; Carlos P. Silva; Marcelo Goulart Dário; Marcelo Goulart Dário; Jean-Marc Daran; Paulo S. Schlölg; Andreas Karoly Gombert; Júlio Cézar A. do Espirito-Santo; Thiago Olitta Basso; Thiago Olitta Basso; Stefan de Kok; Gabriela Muller; Boris U. Stambuk; Boris U. Stambuk; Jack T. Pronk;pmid: 21963484
Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2011.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2011.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Proceedings of the National Academy of Sciences Funded by:EC | AdLibYeastEC| AdLibYeastAuthors: Niels G. A. Kuijpers; Daniel Solis-Escalante; Marijke A. H. Luttik; Markus M. M. Bisschops; +5 AuthorsNiels G. A. Kuijpers; Daniel Solis-Escalante; Marijke A. H. Luttik; Markus M. M. Bisschops; Francine J. Boonekamp; Marcel van den Broek; Jack T. Pronk; Jean-Marc Daran; Pascale Daran-Lapujade;Significance Replacement of petrochemistry by bio-based processes requires microbes equipped with novel-to-nature capabilities. The efficiency of such engineered microbes strongly depends on their native metabolic networks, which, forged by eons of evolution, are complex and encoded by mosaic microbial genomes. Absence of a modular organization of genomes tremendously restricts genetic accessibility and presents a major hurdle for fundamental understanding and rational engineering of central metabolism. Using as a paradigm the nearly ubiquitous glycolytic pathway, we introduce a radical approach, enabling the “transplantation” of essential metabolic routes in the model and industrial yeast Saccharomyces cerevisiae . This achievement demonstrates that a modular design of synthetic genomes offers unprecedented possibilities for fast, combinatorial exploration, and optimization of the biological function of essential cellular processes.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1606701113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1606701113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Proceedings of the National Academy of Sciences Funded by:EC | AdLibYeastEC| AdLibYeastAuthors: Niels G. A. Kuijpers; Daniel Solis-Escalante; Marijke A. H. Luttik; Markus M. M. Bisschops; +5 AuthorsNiels G. A. Kuijpers; Daniel Solis-Escalante; Marijke A. H. Luttik; Markus M. M. Bisschops; Francine J. Boonekamp; Marcel van den Broek; Jack T. Pronk; Jean-Marc Daran; Pascale Daran-Lapujade;Significance Replacement of petrochemistry by bio-based processes requires microbes equipped with novel-to-nature capabilities. The efficiency of such engineered microbes strongly depends on their native metabolic networks, which, forged by eons of evolution, are complex and encoded by mosaic microbial genomes. Absence of a modular organization of genomes tremendously restricts genetic accessibility and presents a major hurdle for fundamental understanding and rational engineering of central metabolism. Using as a paradigm the nearly ubiquitous glycolytic pathway, we introduce a radical approach, enabling the “transplantation” of essential metabolic routes in the model and industrial yeast Saccharomyces cerevisiae . This achievement demonstrates that a modular design of synthetic genomes offers unprecedented possibilities for fast, combinatorial exploration, and optimization of the biological function of essential cellular processes.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1606701113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1606701113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Springer Science and Business Media LLC Paul Klaassen; Jean-Marc Daran; Arnold J. M. Driessen; Jack T. Pronk; Antonius J. A. van Maris; Antonius J. A. van Maris; Barbara Crimi; Barbara Crimi; Jeroen G. Nijland; H. Wouter Wisselink; Maarten D Verhoeven; Jasmine M. Bracher;pmid: 29563966
pmc: PMC5848512
l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains.Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2, had been deleted. Sugar transport assays indicated that this fungal transporter, designated as PcAraT, is a high-affinity (Km = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10-3 and 1.8 g L-1, respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of PcAraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L-1 l-arabinose and 20 g L-1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2.Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make PcAraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.
Biotechnology for Bi... arrow_drop_down Biotechnology for BiofuelsArticle . 2018License: CC BYData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-018-1047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 18 Powered bymore_vert Biotechnology for Bi... arrow_drop_down Biotechnology for BiofuelsArticle . 2018License: CC BYData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-018-1047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Springer Science and Business Media LLC Paul Klaassen; Jean-Marc Daran; Arnold J. M. Driessen; Jack T. Pronk; Antonius J. A. van Maris; Antonius J. A. van Maris; Barbara Crimi; Barbara Crimi; Jeroen G. Nijland; H. Wouter Wisselink; Maarten D Verhoeven; Jasmine M. Bracher;pmid: 29563966
pmc: PMC5848512
l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains.Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2, had been deleted. Sugar transport assays indicated that this fungal transporter, designated as PcAraT, is a high-affinity (Km = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10-3 and 1.8 g L-1, respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of PcAraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L-1 l-arabinose and 20 g L-1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2.Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make PcAraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.
Biotechnology for Bi... arrow_drop_down Biotechnology for BiofuelsArticle . 2018License: CC BYData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-018-1047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 18 Powered bymore_vert Biotechnology for Bi... arrow_drop_down Biotechnology for BiofuelsArticle . 2018License: CC BYData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-018-1047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 NetherlandsPublisher:American Society for Microbiology Authors: Kozak, B.U. (author); Van Rossum, H.M. (author); Luttik, M.A.H. (author); Akeroyd, M. (author); +6 AuthorsKozak, B.U. (author); Van Rossum, H.M. (author); Luttik, M.A.H. (author); Akeroyd, M. (author); Benjamin, K.R. (author); Wu, L. (author); De Vries, S. (author); Daran, J.M. (author); Pronk, J.T. (author); Van Maris, A.J.A. (author);ABSTRACTThe energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced intoSaccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) fromEnterococcus faecaliscan fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis.In vivoactivity ofE. faecalisPDH required simultaneous expression ofE. faecalisgenes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed theseE. faecalisgenes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that theE. faecalisPDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified fromE. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways.IMPORTANCEGenetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy (ATP) costs for product formation from sugar must be minimized. Here, we focus on an important ATP-requiring process in baker’s yeast (Saccharomyces cerevisiae): synthesis of cytosolic acetyl coenzyme A, a key precursor for many industrially important products, ranging from biofuels to fragrances. We demonstrate that pyruvate dehydrogenase from the bacteriumEnterococcus faecalis, a huge enzyme complex with a size similar to that of a ribosome, can be functionally expressed and assembled in the cytosol of baker’s yeast. Moreover, we show that this ATP-independent mechanism for cytosolic acetyl-CoA synthesis can entirely replace the ATP-costly native yeast pathway. This work provides metabolic engineers with a new option to optimize the performance of baker’s yeast as a “cell factory” for sustainable production of fuels and chemicals.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2014License: CC BY NC SAFull-Text: https://doi.org/10.1128/mBio.01696-14Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.01696-14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2014License: CC BY NC SAFull-Text: https://doi.org/10.1128/mBio.01696-14Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.01696-14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 NetherlandsPublisher:American Society for Microbiology Authors: Kozak, B.U. (author); Van Rossum, H.M. (author); Luttik, M.A.H. (author); Akeroyd, M. (author); +6 AuthorsKozak, B.U. (author); Van Rossum, H.M. (author); Luttik, M.A.H. (author); Akeroyd, M. (author); Benjamin, K.R. (author); Wu, L. (author); De Vries, S. (author); Daran, J.M. (author); Pronk, J.T. (author); Van Maris, A.J.A. (author);ABSTRACTThe energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced intoSaccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) fromEnterococcus faecaliscan fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis.In vivoactivity ofE. faecalisPDH required simultaneous expression ofE. faecalisgenes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed theseE. faecalisgenes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that theE. faecalisPDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified fromE. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways.IMPORTANCEGenetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy (ATP) costs for product formation from sugar must be minimized. Here, we focus on an important ATP-requiring process in baker’s yeast (Saccharomyces cerevisiae): synthesis of cytosolic acetyl coenzyme A, a key precursor for many industrially important products, ranging from biofuels to fragrances. We demonstrate that pyruvate dehydrogenase from the bacteriumEnterococcus faecalis, a huge enzyme complex with a size similar to that of a ribosome, can be functionally expressed and assembled in the cytosol of baker’s yeast. Moreover, we show that this ATP-independent mechanism for cytosolic acetyl-CoA synthesis can entirely replace the ATP-costly native yeast pathway. This work provides metabolic engineers with a new option to optimize the performance of baker’s yeast as a “cell factory” for sustainable production of fuels and chemicals.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2014License: CC BY NC SAFull-Text: https://doi.org/10.1128/mBio.01696-14Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.01696-14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2014License: CC BY NC SAFull-Text: https://doi.org/10.1128/mBio.01696-14Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.01696-14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Oxford University Press (OUP) Johannes H. de Winde; Johannes H. de Winde; Jean-Marc Daran; Jack T. Pronk; Viktor Marius Boer; Marinka J. H. Almering;pmid: 15949974
Transcriptional regulation of branched-chain amino-acid metabolism in Saccharomyces cerevisiae involves two key regulator proteins, Leu3p and Gcn4p. Leu3p is a pathway-specific regulator, known to regulate six genes involved in branched-chain amino-acid metabolism and one gene in nitrogen assimilation. Gcn4p is a global regulator, involved in the general response to amino-acid and purine starvation. To investigate the contribution of Leu3p in regulation of gene expression, a leu3Delta strain was compared to an isogenic reference strain using DNA-microarray analysis. This comparison was performed for both glucose-grown/ammonium-limited and ethanol-limited/ammonium-excess chemostat cultures. In ethanol-limited cultures, absence of Leu3p led to reduced transcript levels of six of the seven established Leu3p target genes, but did not affect key physiological parameters. In ammonium-limited cultures, absence of Leu3p caused a drastic decrease in storage carbohydrate content. mRNA levels of genes involved in storage carbohydrate metabolism were also found reduced. Under N-limited conditions, the leu3Delta genotype elicited an amino-acid starvation response, leading to increased transcript levels of many amino-acid biosynthesis genes. By combining the transcriptome data with data from earlier studies that measured DNA binding of Leu3p both in vitro and in vivo, BAT1, GAT1 and OAC1 were identified as additional Leu3p-regulated genes. This study demonstrates that unravelling of transcriptional regulation networks should preferably include several cultivation conditions and requires a combination of experimental approaches.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.femsyr.2005.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.femsyr.2005.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Oxford University Press (OUP) Johannes H. de Winde; Johannes H. de Winde; Jean-Marc Daran; Jack T. Pronk; Viktor Marius Boer; Marinka J. H. Almering;pmid: 15949974
Transcriptional regulation of branched-chain amino-acid metabolism in Saccharomyces cerevisiae involves two key regulator proteins, Leu3p and Gcn4p. Leu3p is a pathway-specific regulator, known to regulate six genes involved in branched-chain amino-acid metabolism and one gene in nitrogen assimilation. Gcn4p is a global regulator, involved in the general response to amino-acid and purine starvation. To investigate the contribution of Leu3p in regulation of gene expression, a leu3Delta strain was compared to an isogenic reference strain using DNA-microarray analysis. This comparison was performed for both glucose-grown/ammonium-limited and ethanol-limited/ammonium-excess chemostat cultures. In ethanol-limited cultures, absence of Leu3p led to reduced transcript levels of six of the seven established Leu3p target genes, but did not affect key physiological parameters. In ammonium-limited cultures, absence of Leu3p caused a drastic decrease in storage carbohydrate content. mRNA levels of genes involved in storage carbohydrate metabolism were also found reduced. Under N-limited conditions, the leu3Delta genotype elicited an amino-acid starvation response, leading to increased transcript levels of many amino-acid biosynthesis genes. By combining the transcriptome data with data from earlier studies that measured DNA binding of Leu3p both in vitro and in vivo, BAT1, GAT1 and OAC1 were identified as additional Leu3p-regulated genes. This study demonstrates that unravelling of transcriptional regulation networks should preferably include several cultivation conditions and requires a combination of experimental approaches.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.femsyr.2005.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.femsyr.2005.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Oxford University Press (OUP) Maarten D Verhoeven; Jasmine M Bracher; Jeroen G Nijland; Jonna Bouwknegt; Jean-Marc G Daran; Arnold J M Driessen; Antonius J A van Maris; Jack T Pronk;pmid: 29860442
pmc: PMC6044391
Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantaruml-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h-1 on l-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on l-arabinose in the presence of d-glucose and d-xylose. In four strains isolated from two independent evolution experiments the galactose-transporter gene GAL2 had been duplicated, with all alleles encoding Gal2N376T or Gal2N376I substitutions. In one strain, a single GAL2 allele additionally encoded a Gal2T89I substitution, which was subsequently also detected in the independently evolved strain IMS0010. In 14C-sugar-transport assays, Gal2N376S, Gal2N376T and Gal2N376I substitutions showed a much lower glucose sensitivity of l-arabinose transport and a much higher Km for d-glucose transport than wild-type Gal2. Introduction of the Gal2N376I substitution in a non-evolved strain enabled growth on l-arabinose in the presence of d-glucose. Gal2N376T, T89I and Gal2T89I variants showed a lower Km for l-arabinose and a higher Km for d-glucose than wild-type Gal2, while reverting Gal2N376T, T89I to Gal2N376 in an evolved strain negatively affected anaerobic growth on l-arabinose. This study indicates that optimal conversion of mixed-sugar feedstocks may require complex 'transporter landscapes', consisting of sugar transporters with complementary kinetic and regulatory properties.
FEMS Yeast Research arrow_drop_down FEMS Yeast ResearchArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsyr/foy062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 3 Powered bymore_vert FEMS Yeast Research arrow_drop_down FEMS Yeast ResearchArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsyr/foy062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Oxford University Press (OUP) Maarten D Verhoeven; Jasmine M Bracher; Jeroen G Nijland; Jonna Bouwknegt; Jean-Marc G Daran; Arnold J M Driessen; Antonius J A van Maris; Jack T Pronk;pmid: 29860442
pmc: PMC6044391
Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantaruml-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h-1 on l-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on l-arabinose in the presence of d-glucose and d-xylose. In four strains isolated from two independent evolution experiments the galactose-transporter gene GAL2 had been duplicated, with all alleles encoding Gal2N376T or Gal2N376I substitutions. In one strain, a single GAL2 allele additionally encoded a Gal2T89I substitution, which was subsequently also detected in the independently evolved strain IMS0010. In 14C-sugar-transport assays, Gal2N376S, Gal2N376T and Gal2N376I substitutions showed a much lower glucose sensitivity of l-arabinose transport and a much higher Km for d-glucose transport than wild-type Gal2. Introduction of the Gal2N376I substitution in a non-evolved strain enabled growth on l-arabinose in the presence of d-glucose. Gal2N376T, T89I and Gal2T89I variants showed a lower Km for l-arabinose and a higher Km for d-glucose than wild-type Gal2, while reverting Gal2N376T, T89I to Gal2N376 in an evolved strain negatively affected anaerobic growth on l-arabinose. This study indicates that optimal conversion of mixed-sugar feedstocks may require complex 'transporter landscapes', consisting of sugar transporters with complementary kinetic and regulatory properties.
FEMS Yeast Research arrow_drop_down FEMS Yeast ResearchArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsyr/foy062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 3 Powered bymore_vert FEMS Yeast Research arrow_drop_down FEMS Yeast ResearchArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsyr/foy062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Cold Spring Harbor Laboratory Marieke Warmerdam; Marcel A Vieira-Lara; Robert Mans; Jean Marc Daran; Jack T Pronk;AbstractEmerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.12 and 0.46 h-1. Seven strains were studied in aerobic, ethanol-limited chemostats (dilution rate 0.10 h-1).Saccharomyces cerevisiaeandKluyveromyces lactis, whose genomes do not encode Complex-I-type NADH dehydrogenases, showed biomass yields of 0.59 and 0.56 gbiomassg-1, respectively. Different biomass yields were observed among species whose genomes do harbour Complex-I genes:Phaffomyces thermotolerans(0.58 g g-1),Pichia ethanolica(0.59 g g-1),Saturnispora dispora(0.66 g g-1),Ogataea parapolymorpha(0.67 g g-1), andCyberlindnera jadinii(0.73 g g-1). The biomass yield ofC. jadinii, which also showed the highest biomass protein content of these yeasts, corresponded to 88% of the theoretical maximum achieved when growth is limited by assimilation rather than by energy availability. This study indicates that energy coupling of mitochondrial respiration and its regulation are key factors for selecting and improving yeast strains for ethanol-based processes.
FEMS Yeast Research arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.09.27.615414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert FEMS Yeast Research arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.09.27.615414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Cold Spring Harbor Laboratory Marieke Warmerdam; Marcel A Vieira-Lara; Robert Mans; Jean Marc Daran; Jack T Pronk;AbstractEmerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.12 and 0.46 h-1. Seven strains were studied in aerobic, ethanol-limited chemostats (dilution rate 0.10 h-1).Saccharomyces cerevisiaeandKluyveromyces lactis, whose genomes do not encode Complex-I-type NADH dehydrogenases, showed biomass yields of 0.59 and 0.56 gbiomassg-1, respectively. Different biomass yields were observed among species whose genomes do harbour Complex-I genes:Phaffomyces thermotolerans(0.58 g g-1),Pichia ethanolica(0.59 g g-1),Saturnispora dispora(0.66 g g-1),Ogataea parapolymorpha(0.67 g g-1), andCyberlindnera jadinii(0.73 g g-1). The biomass yield ofC. jadinii, which also showed the highest biomass protein content of these yeasts, corresponded to 88% of the theoretical maximum achieved when growth is limited by assimilation rather than by energy availability. This study indicates that energy coupling of mitochondrial respiration and its regulation are key factors for selecting and improving yeast strains for ethanol-based processes.
FEMS Yeast Research arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.09.27.615414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert FEMS Yeast Research arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.09.27.615414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Cold Spring Harbor Laboratory Authors: Oriol Cabau-Peinado; Marijn Winkelhorst; Rozanne Stroek; Roderick de Kat Angelino; +4 AuthorsOriol Cabau-Peinado; Marijn Winkelhorst; Rozanne Stroek; Roderick de Kat Angelino; Adrie J.J. Straathof; Kunal Masania; Jean Marc Daran; Ludovic Jourdin;SummaryMicrobial electrosynthesis allows the electrochemical upgrading of CO2. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2to even-chain C2-C6 carboxylic acids during 248 days. We demonstrate a 3-fold higher biofilm concentration, volumetric current density, and productivity than the state of the art, up to a new record of -35 kA m-3cathodeand 69 kgCm-3cathodeday-1, at 60-97% and 30-35% faradaic and energy efficiencies, respectively. Most notably, the volumetric productivity resembles those achieved in lab-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale-up the technology.Graphical abstract
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.02.08.579422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.02.08.579422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Cold Spring Harbor Laboratory Authors: Oriol Cabau-Peinado; Marijn Winkelhorst; Rozanne Stroek; Roderick de Kat Angelino; +4 AuthorsOriol Cabau-Peinado; Marijn Winkelhorst; Rozanne Stroek; Roderick de Kat Angelino; Adrie J.J. Straathof; Kunal Masania; Jean Marc Daran; Ludovic Jourdin;SummaryMicrobial electrosynthesis allows the electrochemical upgrading of CO2. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2to even-chain C2-C6 carboxylic acids during 248 days. We demonstrate a 3-fold higher biofilm concentration, volumetric current density, and productivity than the state of the art, up to a new record of -35 kA m-3cathodeand 69 kgCm-3cathodeday-1, at 60-97% and 30-35% faradaic and energy efficiencies, respectively. Most notably, the volumetric productivity resembles those achieved in lab-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale-up the technology.Graphical abstract
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.02.08.579422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.02.08.579422&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Guadalupe-Medina, V. (author); Wisselink, H.W. (author); Luttik, M.A.H. (author); De Hulster, E. (author); +3 AuthorsGuadalupe-Medina, V. (author); Wisselink, H.W. (author); Luttik, M.A.H. (author); De Hulster, E. (author); Daran, J.M. (author); Pronk, J.T. (author); Van Maris, A.J.A. (author);Abstract Background Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology. Results A hitherto unexplored strategy to address this redox challenge is the functional expression in yeast of enzymes from autotrophs, thereby enabling the use of CO2 as electron acceptor for NADH reoxidation. Functional expression of the Calvin cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in Saccharomyces cerevisiae led to a 90% reduction of the by-product glycerol and a 10% increase in ethanol production in sugar-limited chemostat cultures on a mixture of glucose and galactose. Co-expression of the Escherichia coli chaperones GroEL and GroES was key to successful expression of CbbM, a form-II Rubisco from the chemolithoautotrophic bacterium Thiobacillus denitrificans in yeast. Conclusions Our results demonstrate functional expression of Rubisco in a heterotrophic eukaryote and demonstrate how incorporation of CO2 as a co-substrate in metabolic engineering of heterotrophic industrial microorganisms can be used to improve product yields. Rapid advances in molecular biology should allow for rapid insertion of this 4-gene expression cassette in industrial yeast strains to improve production, not only of 1st and 2nd generation ethanol production, but also of other renewable fuels or chemicals.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-6-125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 3 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-6-125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Guadalupe-Medina, V. (author); Wisselink, H.W. (author); Luttik, M.A.H. (author); De Hulster, E. (author); +3 AuthorsGuadalupe-Medina, V. (author); Wisselink, H.W. (author); Luttik, M.A.H. (author); De Hulster, E. (author); Daran, J.M. (author); Pronk, J.T. (author); Van Maris, A.J.A. (author);Abstract Background Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of CO2 as electron acceptor for NADH oxidation in heterotrophic microorganisms would increase product yields in industrial biotechnology. Results A hitherto unexplored strategy to address this redox challenge is the functional expression in yeast of enzymes from autotrophs, thereby enabling the use of CO2 as electron acceptor for NADH reoxidation. Functional expression of the Calvin cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in Saccharomyces cerevisiae led to a 90% reduction of the by-product glycerol and a 10% increase in ethanol production in sugar-limited chemostat cultures on a mixture of glucose and galactose. Co-expression of the Escherichia coli chaperones GroEL and GroES was key to successful expression of CbbM, a form-II Rubisco from the chemolithoautotrophic bacterium Thiobacillus denitrificans in yeast. Conclusions Our results demonstrate functional expression of Rubisco in a heterotrophic eukaryote and demonstrate how incorporation of CO2 as a co-substrate in metabolic engineering of heterotrophic industrial microorganisms can be used to improve product yields. Rapid advances in molecular biology should allow for rapid insertion of this 4-gene expression cassette in industrial yeast strains to improve production, not only of 1st and 2nd generation ethanol production, but also of other renewable fuels or chemicals.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-6-125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 3 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-6-125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 NetherlandsPublisher:Wiley Funded by:EC | ELOXY, EC | PAcMENEC| ELOXY ,EC| PAcMENPerli, Thomas; Wronska, Anna K.; Ortiz‐Merino, Raúl A.; Pronk, Jack T.; Daran, Jean‐Marc;AbstractChemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B‐group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term “vitamin” is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Yeast arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/yea.3461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 39visibility views 39 download downloads 6 Powered bymore_vert Yeast arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/yea.3461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 NetherlandsPublisher:Wiley Funded by:EC | ELOXY, EC | PAcMENEC| ELOXY ,EC| PAcMENPerli, Thomas; Wronska, Anna K.; Ortiz‐Merino, Raúl A.; Pronk, Jack T.; Daran, Jean‐Marc;AbstractChemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B‐group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term “vitamin” is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Yeast arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/yea.3461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 39visibility views 39 download downloads 6 Powered bymore_vert Yeast arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/yea.3461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Antonius J. A. van Maris; Aldo Tonso; Carlos P. Silva; Marcelo Goulart Dário; Marcelo Goulart Dário; Jean-Marc Daran; Paulo S. Schlölg; Andreas Karoly Gombert; Júlio Cézar A. do Espirito-Santo; Thiago Olitta Basso; Thiago Olitta Basso; Stefan de Kok; Gabriela Muller; Boris U. Stambuk; Boris U. Stambuk; Jack T. Pronk;pmid: 21963484
Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2011.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2011.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Antonius J. A. van Maris; Aldo Tonso; Carlos P. Silva; Marcelo Goulart Dário; Marcelo Goulart Dário; Jean-Marc Daran; Paulo S. Schlölg; Andreas Karoly Gombert; Júlio Cézar A. do Espirito-Santo; Thiago Olitta Basso; Thiago Olitta Basso; Stefan de Kok; Gabriela Muller; Boris U. Stambuk; Boris U. Stambuk; Jack T. Pronk;pmid: 21963484
Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2011.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymben.2011.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Proceedings of the National Academy of Sciences Funded by:EC | AdLibYeastEC| AdLibYeastAuthors: Niels G. A. Kuijpers; Daniel Solis-Escalante; Marijke A. H. Luttik; Markus M. M. Bisschops; +5 AuthorsNiels G. A. Kuijpers; Daniel Solis-Escalante; Marijke A. H. Luttik; Markus M. M. Bisschops; Francine J. Boonekamp; Marcel van den Broek; Jack T. Pronk; Jean-Marc Daran; Pascale Daran-Lapujade;Significance Replacement of petrochemistry by bio-based processes requires microbes equipped with novel-to-nature capabilities. The efficiency of such engineered microbes strongly depends on their native metabolic networks, which, forged by eons of evolution, are complex and encoded by mosaic microbial genomes. Absence of a modular organization of genomes tremendously restricts genetic accessibility and presents a major hurdle for fundamental understanding and rational engineering of central metabolism. Using as a paradigm the nearly ubiquitous glycolytic pathway, we introduce a radical approach, enabling the “transplantation” of essential metabolic routes in the model and industrial yeast Saccharomyces cerevisiae . This achievement demonstrates that a modular design of synthetic genomes offers unprecedented possibilities for fast, combinatorial exploration, and optimization of the biological function of essential cellular processes.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1606701113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1606701113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Proceedings of the National Academy of Sciences Funded by:EC | AdLibYeastEC| AdLibYeastAuthors: Niels G. A. Kuijpers; Daniel Solis-Escalante; Marijke A. H. Luttik; Markus M. M. Bisschops; +5 AuthorsNiels G. A. Kuijpers; Daniel Solis-Escalante; Marijke A. H. Luttik; Markus M. M. Bisschops; Francine J. Boonekamp; Marcel van den Broek; Jack T. Pronk; Jean-Marc Daran; Pascale Daran-Lapujade;Significance Replacement of petrochemistry by bio-based processes requires microbes equipped with novel-to-nature capabilities. The efficiency of such engineered microbes strongly depends on their native metabolic networks, which, forged by eons of evolution, are complex and encoded by mosaic microbial genomes. Absence of a modular organization of genomes tremendously restricts genetic accessibility and presents a major hurdle for fundamental understanding and rational engineering of central metabolism. Using as a paradigm the nearly ubiquitous glycolytic pathway, we introduce a radical approach, enabling the “transplantation” of essential metabolic routes in the model and industrial yeast Saccharomyces cerevisiae . This achievement demonstrates that a modular design of synthetic genomes offers unprecedented possibilities for fast, combinatorial exploration, and optimization of the biological function of essential cellular processes.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1606701113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1606701113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Springer Science and Business Media LLC Paul Klaassen; Jean-Marc Daran; Arnold J. M. Driessen; Jack T. Pronk; Antonius J. A. van Maris; Antonius J. A. van Maris; Barbara Crimi; Barbara Crimi; Jeroen G. Nijland; H. Wouter Wisselink; Maarten D Verhoeven; Jasmine M. Bracher;pmid: 29563966
pmc: PMC5848512
l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains.Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2, had been deleted. Sugar transport assays indicated that this fungal transporter, designated as PcAraT, is a high-affinity (Km = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10-3 and 1.8 g L-1, respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of PcAraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L-1 l-arabinose and 20 g L-1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2.Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make PcAraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.
Biotechnology for Bi... arrow_drop_down Biotechnology for BiofuelsArticle . 2018License: CC BYData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-018-1047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 18 Powered bymore_vert Biotechnology for Bi... arrow_drop_down Biotechnology for BiofuelsArticle . 2018License: CC BYData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-018-1047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Springer Science and Business Media LLC Paul Klaassen; Jean-Marc Daran; Arnold J. M. Driessen; Jack T. Pronk; Antonius J. A. van Maris; Antonius J. A. van Maris; Barbara Crimi; Barbara Crimi; Jeroen G. Nijland; H. Wouter Wisselink; Maarten D Verhoeven; Jasmine M. Bracher;pmid: 29563966
pmc: PMC5848512
l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains.Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2, had been deleted. Sugar transport assays indicated that this fungal transporter, designated as PcAraT, is a high-affinity (Km = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10-3 and 1.8 g L-1, respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of PcAraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L-1 l-arabinose and 20 g L-1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2.Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make PcAraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.
Biotechnology for Bi... arrow_drop_down Biotechnology for BiofuelsArticle . 2018License: CC BYData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-018-1047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 17visibility views 17 download downloads 18 Powered bymore_vert Biotechnology for Bi... arrow_drop_down Biotechnology for BiofuelsArticle . 2018License: CC BYData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-018-1047-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 NetherlandsPublisher:American Society for Microbiology Authors: Kozak, B.U. (author); Van Rossum, H.M. (author); Luttik, M.A.H. (author); Akeroyd, M. (author); +6 AuthorsKozak, B.U. (author); Van Rossum, H.M. (author); Luttik, M.A.H. (author); Akeroyd, M. (author); Benjamin, K.R. (author); Wu, L. (author); De Vries, S. (author); Daran, J.M. (author); Pronk, J.T. (author); Van Maris, A.J.A. (author);ABSTRACTThe energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced intoSaccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) fromEnterococcus faecaliscan fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis.In vivoactivity ofE. faecalisPDH required simultaneous expression ofE. faecalisgenes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed theseE. faecalisgenes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that theE. faecalisPDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified fromE. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways.IMPORTANCEGenetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy (ATP) costs for product formation from sugar must be minimized. Here, we focus on an important ATP-requiring process in baker’s yeast (Saccharomyces cerevisiae): synthesis of cytosolic acetyl coenzyme A, a key precursor for many industrially important products, ranging from biofuels to fragrances. We demonstrate that pyruvate dehydrogenase from the bacteriumEnterococcus faecalis, a huge enzyme complex with a size similar to that of a ribosome, can be functionally expressed and assembled in the cytosol of baker’s yeast. Moreover, we show that this ATP-independent mechanism for cytosolic acetyl-CoA synthesis can entirely replace the ATP-costly native yeast pathway. This work provides metabolic engineers with a new option to optimize the performance of baker’s yeast as a “cell factory” for sustainable production of fuels and chemicals.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2014License: CC BY NC SAFull-Text: https://doi.org/10.1128/mBio.01696-14Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.01696-14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2014License: CC BY NC SAFull-Text: https://doi.org/10.1128/mBio.01696-14Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.01696-14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 NetherlandsPublisher:American Society for Microbiology Authors: Kozak, B.U. (author); Van Rossum, H.M. (author); Luttik, M.A.H. (author); Akeroyd, M. (author); +6 AuthorsKozak, B.U. (author); Van Rossum, H.M. (author); Luttik, M.A.H. (author); Akeroyd, M. (author); Benjamin, K.R. (author); Wu, L. (author); De Vries, S. (author); Daran, J.M. (author); Pronk, J.T. (author); Van Maris, A.J.A. (author);ABSTRACTThe energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced intoSaccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) fromEnterococcus faecaliscan fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis.In vivoactivity ofE. faecalisPDH required simultaneous expression ofE. faecalisgenes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed theseE. faecalisgenes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that theE. faecalisPDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified fromE. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways.IMPORTANCEGenetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy (ATP) costs for product formation from sugar must be minimized. Here, we focus on an important ATP-requiring process in baker’s yeast (Saccharomyces cerevisiae): synthesis of cytosolic acetyl coenzyme A, a key precursor for many industrially important products, ranging from biofuels to fragrances. We demonstrate that pyruvate dehydrogenase from the bacteriumEnterococcus faecalis, a huge enzyme complex with a size similar to that of a ribosome, can be functionally expressed and assembled in the cytosol of baker’s yeast. Moreover, we show that this ATP-independent mechanism for cytosolic acetyl-CoA synthesis can entirely replace the ATP-costly native yeast pathway. This work provides metabolic engineers with a new option to optimize the performance of baker’s yeast as a “cell factory” for sustainable production of fuels and chemicals.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2014License: CC BY NC SAFull-Text: https://doi.org/10.1128/mBio.01696-14Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.01696-14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2014License: CC BY NC SAFull-Text: https://doi.org/10.1128/mBio.01696-14Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.01696-14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Oxford University Press (OUP) Johannes H. de Winde; Johannes H. de Winde; Jean-Marc Daran; Jack T. Pronk; Viktor Marius Boer; Marinka J. H. Almering;pmid: 15949974
Transcriptional regulation of branched-chain amino-acid metabolism in Saccharomyces cerevisiae involves two key regulator proteins, Leu3p and Gcn4p. Leu3p is a pathway-specific regulator, known to regulate six genes involved in branched-chain amino-acid metabolism and one gene in nitrogen assimilation. Gcn4p is a global regulator, involved in the general response to amino-acid and purine starvation. To investigate the contribution of Leu3p in regulation of gene expression, a leu3Delta strain was compared to an isogenic reference strain using DNA-microarray analysis. This comparison was performed for both glucose-grown/ammonium-limited and ethanol-limited/ammonium-excess chemostat cultures. In ethanol-limited cultures, absence of Leu3p led to reduced transcript levels of six of the seven established Leu3p target genes, but did not affect key physiological parameters. In ammonium-limited cultures, absence of Leu3p caused a drastic decrease in storage carbohydrate content. mRNA levels of genes involved in storage carbohydrate metabolism were also found reduced. Under N-limited conditions, the leu3Delta genotype elicited an amino-acid starvation response, leading to increased transcript levels of many amino-acid biosynthesis genes. By combining the transcriptome data with data from earlier studies that measured DNA binding of Leu3p both in vitro and in vivo, BAT1, GAT1 and OAC1 were identified as additional Leu3p-regulated genes. This study demonstrates that unravelling of transcriptional regulation networks should preferably include several cultivation conditions and requires a combination of experimental approaches.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.femsyr.2005.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.femsyr.2005.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Oxford University Press (OUP) Johannes H. de Winde; Johannes H. de Winde; Jean-Marc Daran; Jack T. Pronk; Viktor Marius Boer; Marinka J. H. Almering;pmid: 15949974
Transcriptional regulation of branched-chain amino-acid metabolism in Saccharomyces cerevisiae involves two key regulator proteins, Leu3p and Gcn4p. Leu3p is a pathway-specific regulator, known to regulate six genes involved in branched-chain amino-acid metabolism and one gene in nitrogen assimilation. Gcn4p is a global regulator, involved in the general response to amino-acid and purine starvation. To investigate the contribution of Leu3p in regulation of gene expression, a leu3Delta strain was compared to an isogenic reference strain using DNA-microarray analysis. This comparison was performed for both glucose-grown/ammonium-limited and ethanol-limited/ammonium-excess chemostat cultures. In ethanol-limited cultures, absence of Leu3p led to reduced transcript levels of six of the seven established Leu3p target genes, but did not affect key physiological parameters. In ammonium-limited cultures, absence of Leu3p caused a drastic decrease in storage carbohydrate content. mRNA levels of genes involved in storage carbohydrate metabolism were also found reduced. Under N-limited conditions, the leu3Delta genotype elicited an amino-acid starvation response, leading to increased transcript levels of many amino-acid biosynthesis genes. By combining the transcriptome data with data from earlier studies that measured DNA binding of Leu3p both in vitro and in vivo, BAT1, GAT1 and OAC1 were identified as additional Leu3p-regulated genes. This study demonstrates that unravelling of transcriptional regulation networks should preferably include several cultivation conditions and requires a combination of experimental approaches.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.femsyr.2005.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.femsyr.2005.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Oxford University Press (OUP) Maarten D Verhoeven; Jasmine M Bracher; Jeroen G Nijland; Jonna Bouwknegt; Jean-Marc G Daran; Arnold J M Driessen; Antonius J A van Maris; Jack T Pronk;pmid: 29860442
pmc: PMC6044391
Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantaruml-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h-1 on l-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on l-arabinose in the presence of d-glucose and d-xylose. In four strains isolated from two independent evolution experiments the galactose-transporter gene GAL2 had been duplicated, with all alleles encoding Gal2N376T or Gal2N376I substitutions. In one strain, a single GAL2 allele additionally encoded a Gal2T89I substitution, which was subsequently also detected in the independently evolved strain IMS0010. In 14C-sugar-transport assays, Gal2N376S, Gal2N376T and Gal2N376I substitutions showed a much lower glucose sensitivity of l-arabinose transport and a much higher Km for d-glucose transport than wild-type Gal2. Introduction of the Gal2N376I substitution in a non-evolved strain enabled growth on l-arabinose in the presence of d-glucose. Gal2N376T, T89I and Gal2T89I variants showed a lower Km for l-arabinose and a higher Km for d-glucose than wild-type Gal2, while reverting Gal2N376T, T89I to Gal2N376 in an evolved strain negatively affected anaerobic growth on l-arabinose. This study indicates that optimal conversion of mixed-sugar feedstocks may require complex 'transporter landscapes', consisting of sugar transporters with complementary kinetic and regulatory properties.
FEMS Yeast Research arrow_drop_down FEMS Yeast ResearchArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsyr/foy062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 3 Powered bymore_vert FEMS Yeast Research arrow_drop_down FEMS Yeast ResearchArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsyr/foy062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Oxford University Press (OUP) Maarten D Verhoeven; Jasmine M Bracher; Jeroen G Nijland; Jonna Bouwknegt; Jean-Marc G Daran; Arnold J M Driessen; Antonius J A van Maris; Jack T Pronk;pmid: 29860442
pmc: PMC6044391
Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantaruml-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h-1 on l-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on l-arabinose in the presence of d-glucose and d-xylose. In four strains isolated from two independent evolution experiments the galactose-transporter gene GAL2 had been duplicated, with all alleles encoding Gal2N376T or Gal2N376I substitutions. In one strain, a single GAL2 allele additionally encoded a Gal2T89I substitution, which was subsequently also detected in the independently evolved strain IMS0010. In 14C-sugar-transport assays, Gal2N376S, Gal2N376T and Gal2N376I substitutions showed a much lower glucose sensitivity of l-arabinose transport and a much higher Km for d-glucose transport than wild-type Gal2. Introduction of the Gal2N376I substitution in a non-evolved strain enabled growth on l-arabinose in the presence of d-glucose. Gal2N376T, T89I and Gal2T89I variants showed a lower Km for l-arabinose and a higher Km for d-glucose than wild-type Gal2, while reverting Gal2N376T, T89I to Gal2N376 in an evolved strain negatively affected anaerobic growth on l-arabinose. This study indicates that optimal conversion of mixed-sugar feedstocks may require complex 'transporter landscapes', consisting of sugar transporters with complementary kinetic and regulatory properties.
FEMS Yeast Research arrow_drop_down FEMS Yeast ResearchArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsyr/foy062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 3 Powered bymore_vert FEMS Yeast Research arrow_drop_down FEMS Yeast ResearchArticle . 2018License: CC BY NC NDData sources: University of Groningen Research PortalDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsyr/foy062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Cold Spring Harbor Laboratory Marieke Warmerdam; Marcel A Vieira-Lara; Robert Mans; Jean Marc Daran; Jack T Pronk;AbstractEmerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.12 and 0.46 h-1. Seven strains were studied in aerobic, ethanol-limited chemostats (dilution rate 0.10 h-1).Saccharomyces cerevisiaeandKluyveromyces lactis, whose genomes do not encode Complex-I-type NADH dehydrogenases, showed biomass yields of 0.59 and 0.56 gbiomassg-1, respectively. Different biomass yields were observed among species whose genomes do harbour Complex-I genes:Phaffomyces thermotolerans(0.58 g g-1),Pichia ethanolica(0.59 g g-1),Saturnispora dispora(0.66 g g-1),Ogataea parapolymorpha(0.67 g g-1), andCyberlindnera jadinii(0.73 g g-1). The biomass yield ofC. jadinii, which also showed the highest biomass protein content of these yeasts, corresponded to 88% of the theoretical maximum achieved when growth is limited by assimilation rather than by energy availability. This study indicates that energy coupling of mitochondrial respiration and its regulation are key factors for selecting and improving yeast strains for ethanol-based processes.
FEMS Yeast Research arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.09.27.615414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert FEMS Yeast Research arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.09.27.615414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Cold Spring Harbor Laboratory Marieke Warmerdam; Marcel A Vieira-Lara; Robert Mans; Jean Marc Daran; Jack T Pronk;AbstractEmerging low-emission production technologies make ethanol an interesting substrate for yeast biotechnology, but information on growth rates and biomass yields of yeasts on ethanol is scarce. Strains of 52 Saccharomycotina yeasts were screened for growth on ethanol. The 21 fastest strains, among which representatives of the Phaffomycetales order were overrepresented, showed specific growth rates in ethanol-grown shake-flask cultures between 0.12 and 0.46 h-1. Seven strains were studied in aerobic, ethanol-limited chemostats (dilution rate 0.10 h-1).Saccharomyces cerevisiaeandKluyveromyces lactis, whose genomes do not encode Complex-I-type NADH dehydrogenases, showed biomass yields of 0.59 and 0.56 gbiomassg-1, respectively. Different biomass yields were observed among species whose genomes do harbour Complex-I genes:Phaffomyces thermotolerans(0.58 g g-1),Pichia ethanolica(0.59 g g-1),Saturnispora dispora(0.66 g g-1),Ogataea parapolymorpha(0.67 g g-1), andCyberlindnera jadinii(0.73 g g-1). The biomass yield ofC. jadinii, which also showed the highest biomass protein content of these yeasts, corresponded to 88% of the theoretical maximum achieved when growth is limited by assimilation rather than by energy availability. This study indicates that energy coupling of mitochondrial respiration and its regulation are key factors for selecting and improving yeast strains for ethanol-based processes.
FEMS Yeast Research arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.09.27.615414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert FEMS Yeast Research arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.09.27.615414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu