- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Belgium, DenmarkPublisher:Elsevier BV Tingting Zhu; Elias Vieren; Jierong Liang; Jan Eric Thorsen; Michel De Paepe; Steven Lecompte; Brian Elmegaard;The pursuit of sustainable district heating solutions has driven a growing interest in ultra-low temperature district heating (ULTDH) systems, where booster heat pumps (BHPs) play a pivotal role despite challenges posed by their efficiency limitations under large temperature glide conditions. This paper investigates the potential of drop-in R-1234yf/R-32 zeotropic mixtures in BHPs compared to a baseline R-134a system, within the context of a ULTDH framework. This study focused on the viability of the mixtures of R-1234yf/R-32 with the composition ratio of 80 %/20 % and 90 %/10 %. The investigation reveals disparities in compressor efficiency and heat exchanger pressure drop at the component level. Device-level analysis unveils increased COP for R-1234yf/R-32 mixtures, alongside with maximum second-law efficiencies reaching 0.32. A remarkable enhancement in heating capacity up to 58 % was found. System-level analysis demonstrated exergetic efficiencies and identified preferable district heating temperatures. Exergetic efficiencies of 0.47, 0.55, and 0.59 were achieved for domestic hot water preparation at district heating supply temperatures of 30 °C, 35 °C, and 40 °C, with a subsequent shift in optimal district heating temperatures as central heating station efficiency decreased. Temperature profile analysis underscored challenges stemming from excessive subcooling, highlighting the need for configuration refinements.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In TechnologyGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.132292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In TechnologyGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.132292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Belgium, DenmarkPublisher:Elsevier BV Tingting Zhu; Elias Vieren; Jierong Liang; Jan Eric Thorsen; Michel De Paepe; Steven Lecompte; Brian Elmegaard;The pursuit of sustainable district heating solutions has driven a growing interest in ultra-low temperature district heating (ULTDH) systems, where booster heat pumps (BHPs) play a pivotal role despite challenges posed by their efficiency limitations under large temperature glide conditions. This paper investigates the potential of drop-in R-1234yf/R-32 zeotropic mixtures in BHPs compared to a baseline R-134a system, within the context of a ULTDH framework. This study focused on the viability of the mixtures of R-1234yf/R-32 with the composition ratio of 80 %/20 % and 90 %/10 %. The investigation reveals disparities in compressor efficiency and heat exchanger pressure drop at the component level. Device-level analysis unveils increased COP for R-1234yf/R-32 mixtures, alongside with maximum second-law efficiencies reaching 0.32. A remarkable enhancement in heating capacity up to 58 % was found. System-level analysis demonstrated exergetic efficiencies and identified preferable district heating temperatures. Exergetic efficiencies of 0.47, 0.55, and 0.59 were achieved for domestic hot water preparation at district heating supply temperatures of 30 °C, 35 °C, and 40 °C, with a subsequent shift in optimal district heating temperatures as central heating station efficiency decreased. Temperature profile analysis underscored challenges stemming from excessive subcooling, highlighting the need for configuration refinements.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In TechnologyGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.132292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In TechnologyGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.132292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Authors: Abdelkarim Tahiri; Kevin Michael Smith; Jan Eric Thorsen; Christian Anker Hviid; +1 AuthorsAbdelkarim Tahiri; Kevin Michael Smith; Jan Eric Thorsen; Christian Anker Hviid; Svend Svendsen;Storage tanks are commonly used for domestic hot water (DHW) preparation in large buildings supplied by district heating (DH), especially to cope with peak demand. The charging control of DHW tank systems is often suboptimal, increasing return temperatures and harming the overall DH operation efficiency. This paper presents two novel control concepts to optimise DHW tank charging, satisfying comfort and hygienic requirements without leading to excessive DH flows. The first, more complex control concept employs the smart energy meter sometimes used for DHW billing. It inspired the development of a second, broadly implementable control concept employing a staged proportional gain with an added temperature sensor. The authors tested and refined this staged-gain concept using a validated Modelica model of a real DHW system in a Danish multistory residential building. The authors subsequently implemented the staged-gain control concept in the field, successfully reducing the energy-weighted DH return temperature by 7 °C and the total DH flow by 23.6% compared to the conventional thermostatic control. This analysis accounted for the variation in DHW tapping, DHW temperature, DH supply temperature, and cold water temperature. Furthermore, the performance was robust to relaxed settings of the valve constraints, demonstrating minimal configuration requirements for new implementations.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Authors: Abdelkarim Tahiri; Kevin Michael Smith; Jan Eric Thorsen; Christian Anker Hviid; +1 AuthorsAbdelkarim Tahiri; Kevin Michael Smith; Jan Eric Thorsen; Christian Anker Hviid; Svend Svendsen;Storage tanks are commonly used for domestic hot water (DHW) preparation in large buildings supplied by district heating (DH), especially to cope with peak demand. The charging control of DHW tank systems is often suboptimal, increasing return temperatures and harming the overall DH operation efficiency. This paper presents two novel control concepts to optimise DHW tank charging, satisfying comfort and hygienic requirements without leading to excessive DH flows. The first, more complex control concept employs the smart energy meter sometimes used for DHW billing. It inspired the development of a second, broadly implementable control concept employing a staged proportional gain with an added temperature sensor. The authors tested and refined this staged-gain concept using a validated Modelica model of a real DHW system in a Danish multistory residential building. The authors subsequently implemented the staged-gain control concept in the field, successfully reducing the energy-weighted DH return temperature by 7 °C and the total DH flow by 23.6% compared to the conventional thermostatic control. This analysis accounted for the variation in DHW tapping, DHW temperature, DH supply temperature, and cold water temperature. Furthermore, the performance was robust to relaxed settings of the valve constraints, demonstrating minimal configuration requirements for new implementations.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Oddgeir Gudmundsson; Ralf-Roman Schmidt; Anders Dyrelund; Jan Eric Thorsen;Abstract For decades the focus of district heating (DH) has been on energy efficiency and minimum operating temperatures. This quest for continuous efficiency improvements led to the modern 4th generation of DH (4GDH), operating at lowest possible temperature for direct utilization by end-user. In recent years the term 5th generation DH (5GDH) has become popular for individual heat pump systems sharing thermal sources via uninsulated pipe network. While 5GDH has similarity with 4GDH it is a technically different solution, as the heat generation is moved to the end-users. When discussing 4GDH and 5GDH the focus quickly revolves about the efficiency of the distribution grid, however the discussion should be on the overall system efficiency and the levelized cost of the heat (LCOH). This paper analyzes LCOH for a mixed building area consisting of a central heat source, high or low energy buildings connected to 4GDH, 5GDH or a 4GDH variant with end-user temperature boosting for domestic hot water purposes. The analysis considers two countries: DK and UK. The analysis further explores the impact of the heat source temperature, from 10 °C to 60 °C, on the LCOH. The results indicate that 4GDH is the more competitive heat supply solution for the considered case.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Oddgeir Gudmundsson; Ralf-Roman Schmidt; Anders Dyrelund; Jan Eric Thorsen;Abstract For decades the focus of district heating (DH) has been on energy efficiency and minimum operating temperatures. This quest for continuous efficiency improvements led to the modern 4th generation of DH (4GDH), operating at lowest possible temperature for direct utilization by end-user. In recent years the term 5th generation DH (5GDH) has become popular for individual heat pump systems sharing thermal sources via uninsulated pipe network. While 5GDH has similarity with 4GDH it is a technically different solution, as the heat generation is moved to the end-users. When discussing 4GDH and 5GDH the focus quickly revolves about the efficiency of the distribution grid, however the discussion should be on the overall system efficiency and the levelized cost of the heat (LCOH). This paper analyzes LCOH for a mixed building area consisting of a central heat source, high or low energy buildings connected to 4GDH, 5GDH or a 4GDH variant with end-user temperature boosting for domestic hot water purposes. The analysis considers two countries: DK and UK. The analysis further explores the impact of the heat source temperature, from 10 °C to 60 °C, on the LCOH. The results indicate that 4GDH is the more competitive heat supply solution for the considered case.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Jan Eric Thorsen; Svend Svendsen; Kevin Michael Smith; Torben Ommen; Morten Skov;With increasing focus on the performance of district heating systems, a concept is developed to obtain low district heating return temperatures from domestic hot water systems with a high share of circulation loss. For these systems, it is challenging to realize a low district heating return temperature by direct heat exchange only, due to the high flow of circulation return water at 50 °C. The concept is termed Circulation Booster. The purpose of the Circulation Booster is to boost the domestic hot water circulation temperature and at the same time secure a low district heating return temperature from this part of the service. The domestic hot water circulation temperature is heated in two steps: direct heat exchange and a heat pump. The heat source for the Circulation Booster is district heating, and the heat pump itself is driven by electricity. The paper includes the field experiences from a 1-year test period, concluding that the concept is operating as intended. Further, the performance results regarding electric consumption and district heating return temperatures and an economic feasibility study are presented. The current tariff structure in Denmark related to the district heating return temperature and electric costs gives a feasible economic case for the Circulation Booster concept with a direct payback time of 5,1 years. An increasingly progressive tariff scheme for low district heating return temperature or lower electric costs could further improve the economic feasibility of the Circulation Booster concept.
Energy Reports arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Reports arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Jan Eric Thorsen; Svend Svendsen; Kevin Michael Smith; Torben Ommen; Morten Skov;With increasing focus on the performance of district heating systems, a concept is developed to obtain low district heating return temperatures from domestic hot water systems with a high share of circulation loss. For these systems, it is challenging to realize a low district heating return temperature by direct heat exchange only, due to the high flow of circulation return water at 50 °C. The concept is termed Circulation Booster. The purpose of the Circulation Booster is to boost the domestic hot water circulation temperature and at the same time secure a low district heating return temperature from this part of the service. The domestic hot water circulation temperature is heated in two steps: direct heat exchange and a heat pump. The heat source for the Circulation Booster is district heating, and the heat pump itself is driven by electricity. The paper includes the field experiences from a 1-year test period, concluding that the concept is operating as intended. Further, the performance results regarding electric consumption and district heating return temperatures and an economic feasibility study are presented. The current tariff structure in Denmark related to the district heating return temperature and electric costs gives a feasible economic case for the Circulation Booster concept with a direct payback time of 5,1 years. An increasingly progressive tariff scheme for low district heating return temperature or lower electric costs could further improve the economic feasibility of the Circulation Booster concept.
Energy Reports arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Reports arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Chunjun Huang; Yi Zong; Shi You; Chresten Træholt; Jan Eric Thorsen; Lars Finn Sloth Larsen;Large amounts of waste heat during the cooling process of supermarket refrigeration systems (SRS) would be released. A heat recovery strategy potentially contributes to reducing the supermarket's heating costs related to buying heat from a district heating system (DHS). This paper explores the techno-economic feasibility of heat recovery for a real SRS integrated with a heat recovery unit (HRU) in terms of designing a dynamic heat recovery control (HRC) and business models. A cost-effective HRC is firstly developed for HRU to optimally manipulate the amount of heat recovered, thereby minimizing the real-time heat recovery cost. Furthermore, the business models of heat recovery under a long-term operation are proposed based on two transactional strategies between the SRS and DHS. A field test of the dynamic heat recovery for a remote SRS in Copenhagen Nordhavn area is conducted which demonstrates the proposed HRC algorithm can have a benefit of 0.49€ from a 3-h heat recovery operation. Moreover, the one-year operation of the SRS is also simulated which proves the developed two business models of heat recovery can achieve significant savings of 93% and 41% in energy costs.
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Chunjun Huang; Yi Zong; Shi You; Chresten Træholt; Jan Eric Thorsen; Lars Finn Sloth Larsen;Large amounts of waste heat during the cooling process of supermarket refrigeration systems (SRS) would be released. A heat recovery strategy potentially contributes to reducing the supermarket's heating costs related to buying heat from a district heating system (DHS). This paper explores the techno-economic feasibility of heat recovery for a real SRS integrated with a heat recovery unit (HRU) in terms of designing a dynamic heat recovery control (HRC) and business models. A cost-effective HRC is firstly developed for HRU to optimally manipulate the amount of heat recovered, thereby minimizing the real-time heat recovery cost. Furthermore, the business models of heat recovery under a long-term operation are proposed based on two transactional strategies between the SRS and DHS. A field test of the dynamic heat recovery for a remote SRS in Copenhagen Nordhavn area is conducted which demonstrates the proposed HRC algorithm can have a benefit of 0.49€ from a 3-h heat recovery operation. Moreover, the one-year operation of the SRS is also simulated which proves the developed two business models of heat recovery can achieve significant savings of 93% and 41% in energy costs.
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Elsevier BV Funded by:EC | ARVEC| ARVAuthors: Jan Eric Thorsen; Oddgeir Gudmundsson; Michele Tunzi; Torben Esbensen;The transition toward greener district heating (DH) systems is supported by the low-temperature operation of building heating systems. In addition to reducing the DH supply temperature it is necessary to parallelly decrease the DH return temperature. A common bottleneck in lowering DH return temperatures are multi-apartment buildings operating with domestic hot water (DHW) circulation loops. The most common substation design in existing systems heat the DHW circulation using the DHW heat exchanger (HEX). However, as the DHW circulation return temperature is high and the DHW circulation energy demand is relatively high as well, it often results in high DH return temperatures from the building. To address this challenge, this study investigated an innovative design for future-proof DHW substations for large multi-apartment buildings. In the new design, the DHW and DHW circulation loop are decoupled, each utilizing a dedicated HEX for its specific purpose. This new design enables aftercooling the high DH return temperature from the DHW circulation by channeling all, or part, of the return water through the space heating HEX. For the building case examples presented in this study, the DH return temperature reduction potentials are in the range of 5.4 °C–8.3 °C for the 4G temperature profiles.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Elsevier BV Funded by:EC | ARVEC| ARVAuthors: Jan Eric Thorsen; Oddgeir Gudmundsson; Michele Tunzi; Torben Esbensen;The transition toward greener district heating (DH) systems is supported by the low-temperature operation of building heating systems. In addition to reducing the DH supply temperature it is necessary to parallelly decrease the DH return temperature. A common bottleneck in lowering DH return temperatures are multi-apartment buildings operating with domestic hot water (DHW) circulation loops. The most common substation design in existing systems heat the DHW circulation using the DHW heat exchanger (HEX). However, as the DHW circulation return temperature is high and the DHW circulation energy demand is relatively high as well, it often results in high DH return temperatures from the building. To address this challenge, this study investigated an innovative design for future-proof DHW substations for large multi-apartment buildings. In the new design, the DHW and DHW circulation loop are decoupled, each utilizing a dedicated HEX for its specific purpose. This new design enables aftercooling the high DH return temperature from the DHW circulation by channeling all, or part, of the return water through the space heating HEX. For the building case examples presented in this study, the DH return temperature reduction potentials are in the range of 5.4 °C–8.3 °C for the 4G temperature profiles.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Funded by:EC | FLEXYNETSEC| FLEXYNETSHenrik Lund; Poul Alberg Østergaard; Tore Bach Nielsen; Sven Werner; Jan Eric Thorsen; Oddgeir Gudmundsson; Ahmad Arabkoohsar; Brian Vad Mathiesen;Fourth-generation district heating (4GDH) has been used as a label or expression since 2008 to describe a transition path for decarbonization of the district heating sector and was defined in more detail in 2014. During recent years, several papers have been published on a concept called fifth generation district heating and cooling (5GDHC). This article identifies differences and similarities between 4GDH and 5GDHC regarding aims and abilities. The analysis shows that these two are common not only in the overarching aim of decarbonization but that they also to some extent share the five essential abilities first defined for 4GDH. The main driver for 5GDHC has been a strong focus on combined heating and cooling, using a collective network close to ambient temperature levels as common heat source or sink for building-level heat pumps. It is found that 5GDHC can be regarded as a promising technology with its own merits, yet a complementary technology that may coexist in parallel with other 4GDH technologies. However, the term “generation” implies a chronological succession, and the label 5GDHC does not seem compatible with the established labels 1GDH to 4GDH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 218 citations 218 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Funded by:EC | FLEXYNETSEC| FLEXYNETSHenrik Lund; Poul Alberg Østergaard; Tore Bach Nielsen; Sven Werner; Jan Eric Thorsen; Oddgeir Gudmundsson; Ahmad Arabkoohsar; Brian Vad Mathiesen;Fourth-generation district heating (4GDH) has been used as a label or expression since 2008 to describe a transition path for decarbonization of the district heating sector and was defined in more detail in 2014. During recent years, several papers have been published on a concept called fifth generation district heating and cooling (5GDHC). This article identifies differences and similarities between 4GDH and 5GDHC regarding aims and abilities. The analysis shows that these two are common not only in the overarching aim of decarbonization but that they also to some extent share the five essential abilities first defined for 4GDH. The main driver for 5GDHC has been a strong focus on combined heating and cooling, using a collective network close to ambient temperature levels as common heat source or sink for building-level heat pumps. It is found that 5GDHC can be regarded as a promising technology with its own merits, yet a complementary technology that may coexist in parallel with other 4GDH technologies. However, the term “generation” implies a chronological succession, and the label 5GDHC does not seem compatible with the established labels 1GDH to 4GDH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 218 citations 218 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Belgium, DenmarkPublisher:Elsevier BV Tingting Zhu; Elias Vieren; Jierong Liang; Jan Eric Thorsen; Michel De Paepe; Steven Lecompte; Brian Elmegaard;The pursuit of sustainable district heating solutions has driven a growing interest in ultra-low temperature district heating (ULTDH) systems, where booster heat pumps (BHPs) play a pivotal role despite challenges posed by their efficiency limitations under large temperature glide conditions. This paper investigates the potential of drop-in R-1234yf/R-32 zeotropic mixtures in BHPs compared to a baseline R-134a system, within the context of a ULTDH framework. This study focused on the viability of the mixtures of R-1234yf/R-32 with the composition ratio of 80 %/20 % and 90 %/10 %. The investigation reveals disparities in compressor efficiency and heat exchanger pressure drop at the component level. Device-level analysis unveils increased COP for R-1234yf/R-32 mixtures, alongside with maximum second-law efficiencies reaching 0.32. A remarkable enhancement in heating capacity up to 58 % was found. System-level analysis demonstrated exergetic efficiencies and identified preferable district heating temperatures. Exergetic efficiencies of 0.47, 0.55, and 0.59 were achieved for domestic hot water preparation at district heating supply temperatures of 30 °C, 35 °C, and 40 °C, with a subsequent shift in optimal district heating temperatures as central heating station efficiency decreased. Temperature profile analysis underscored challenges stemming from excessive subcooling, highlighting the need for configuration refinements.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In TechnologyGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.132292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In TechnologyGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.132292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Belgium, DenmarkPublisher:Elsevier BV Tingting Zhu; Elias Vieren; Jierong Liang; Jan Eric Thorsen; Michel De Paepe; Steven Lecompte; Brian Elmegaard;The pursuit of sustainable district heating solutions has driven a growing interest in ultra-low temperature district heating (ULTDH) systems, where booster heat pumps (BHPs) play a pivotal role despite challenges posed by their efficiency limitations under large temperature glide conditions. This paper investigates the potential of drop-in R-1234yf/R-32 zeotropic mixtures in BHPs compared to a baseline R-134a system, within the context of a ULTDH framework. This study focused on the viability of the mixtures of R-1234yf/R-32 with the composition ratio of 80 %/20 % and 90 %/10 %. The investigation reveals disparities in compressor efficiency and heat exchanger pressure drop at the component level. Device-level analysis unveils increased COP for R-1234yf/R-32 mixtures, alongside with maximum second-law efficiencies reaching 0.32. A remarkable enhancement in heating capacity up to 58 % was found. System-level analysis demonstrated exergetic efficiencies and identified preferable district heating temperatures. Exergetic efficiencies of 0.47, 0.55, and 0.59 were achieved for domestic hot water preparation at district heating supply temperatures of 30 °C, 35 °C, and 40 °C, with a subsequent shift in optimal district heating temperatures as central heating station efficiency decreased. Temperature profile analysis underscored challenges stemming from excessive subcooling, highlighting the need for configuration refinements.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In TechnologyGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.132292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In TechnologyGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.132292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Authors: Abdelkarim Tahiri; Kevin Michael Smith; Jan Eric Thorsen; Christian Anker Hviid; +1 AuthorsAbdelkarim Tahiri; Kevin Michael Smith; Jan Eric Thorsen; Christian Anker Hviid; Svend Svendsen;Storage tanks are commonly used for domestic hot water (DHW) preparation in large buildings supplied by district heating (DH), especially to cope with peak demand. The charging control of DHW tank systems is often suboptimal, increasing return temperatures and harming the overall DH operation efficiency. This paper presents two novel control concepts to optimise DHW tank charging, satisfying comfort and hygienic requirements without leading to excessive DH flows. The first, more complex control concept employs the smart energy meter sometimes used for DHW billing. It inspired the development of a second, broadly implementable control concept employing a staged proportional gain with an added temperature sensor. The authors tested and refined this staged-gain concept using a validated Modelica model of a real DHW system in a Danish multistory residential building. The authors subsequently implemented the staged-gain control concept in the field, successfully reducing the energy-weighted DH return temperature by 7 °C and the total DH flow by 23.6% compared to the conventional thermostatic control. This analysis accounted for the variation in DHW tapping, DHW temperature, DH supply temperature, and cold water temperature. Furthermore, the performance was robust to relaxed settings of the valve constraints, demonstrating minimal configuration requirements for new implementations.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Authors: Abdelkarim Tahiri; Kevin Michael Smith; Jan Eric Thorsen; Christian Anker Hviid; +1 AuthorsAbdelkarim Tahiri; Kevin Michael Smith; Jan Eric Thorsen; Christian Anker Hviid; Svend Svendsen;Storage tanks are commonly used for domestic hot water (DHW) preparation in large buildings supplied by district heating (DH), especially to cope with peak demand. The charging control of DHW tank systems is often suboptimal, increasing return temperatures and harming the overall DH operation efficiency. This paper presents two novel control concepts to optimise DHW tank charging, satisfying comfort and hygienic requirements without leading to excessive DH flows. The first, more complex control concept employs the smart energy meter sometimes used for DHW billing. It inspired the development of a second, broadly implementable control concept employing a staged proportional gain with an added temperature sensor. The authors tested and refined this staged-gain concept using a validated Modelica model of a real DHW system in a Danish multistory residential building. The authors subsequently implemented the staged-gain control concept in the field, successfully reducing the energy-weighted DH return temperature by 7 °C and the total DH flow by 23.6% compared to the conventional thermostatic control. This analysis accounted for the variation in DHW tapping, DHW temperature, DH supply temperature, and cold water temperature. Furthermore, the performance was robust to relaxed settings of the valve constraints, demonstrating minimal configuration requirements for new implementations.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2023Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Oddgeir Gudmundsson; Ralf-Roman Schmidt; Anders Dyrelund; Jan Eric Thorsen;Abstract For decades the focus of district heating (DH) has been on energy efficiency and minimum operating temperatures. This quest for continuous efficiency improvements led to the modern 4th generation of DH (4GDH), operating at lowest possible temperature for direct utilization by end-user. In recent years the term 5th generation DH (5GDH) has become popular for individual heat pump systems sharing thermal sources via uninsulated pipe network. While 5GDH has similarity with 4GDH it is a technically different solution, as the heat generation is moved to the end-users. When discussing 4GDH and 5GDH the focus quickly revolves about the efficiency of the distribution grid, however the discussion should be on the overall system efficiency and the levelized cost of the heat (LCOH). This paper analyzes LCOH for a mixed building area consisting of a central heat source, high or low energy buildings connected to 4GDH, 5GDH or a 4GDH variant with end-user temperature boosting for domestic hot water purposes. The analysis considers two countries: DK and UK. The analysis further explores the impact of the heat source temperature, from 10 °C to 60 °C, on the LCOH. The results indicate that 4GDH is the more competitive heat supply solution for the considered case.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Oddgeir Gudmundsson; Ralf-Roman Schmidt; Anders Dyrelund; Jan Eric Thorsen;Abstract For decades the focus of district heating (DH) has been on energy efficiency and minimum operating temperatures. This quest for continuous efficiency improvements led to the modern 4th generation of DH (4GDH), operating at lowest possible temperature for direct utilization by end-user. In recent years the term 5th generation DH (5GDH) has become popular for individual heat pump systems sharing thermal sources via uninsulated pipe network. While 5GDH has similarity with 4GDH it is a technically different solution, as the heat generation is moved to the end-users. When discussing 4GDH and 5GDH the focus quickly revolves about the efficiency of the distribution grid, however the discussion should be on the overall system efficiency and the levelized cost of the heat (LCOH). This paper analyzes LCOH for a mixed building area consisting of a central heat source, high or low energy buildings connected to 4GDH, 5GDH or a 4GDH variant with end-user temperature boosting for domestic hot water purposes. The analysis considers two countries: DK and UK. The analysis further explores the impact of the heat source temperature, from 10 °C to 60 °C, on the LCOH. The results indicate that 4GDH is the more competitive heat supply solution for the considered case.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Jan Eric Thorsen; Svend Svendsen; Kevin Michael Smith; Torben Ommen; Morten Skov;With increasing focus on the performance of district heating systems, a concept is developed to obtain low district heating return temperatures from domestic hot water systems with a high share of circulation loss. For these systems, it is challenging to realize a low district heating return temperature by direct heat exchange only, due to the high flow of circulation return water at 50 °C. The concept is termed Circulation Booster. The purpose of the Circulation Booster is to boost the domestic hot water circulation temperature and at the same time secure a low district heating return temperature from this part of the service. The domestic hot water circulation temperature is heated in two steps: direct heat exchange and a heat pump. The heat source for the Circulation Booster is district heating, and the heat pump itself is driven by electricity. The paper includes the field experiences from a 1-year test period, concluding that the concept is operating as intended. Further, the performance results regarding electric consumption and district heating return temperatures and an economic feasibility study are presented. The current tariff structure in Denmark related to the district heating return temperature and electric costs gives a feasible economic case for the Circulation Booster concept with a direct payback time of 5,1 years. An increasingly progressive tariff scheme for low district heating return temperature or lower electric costs could further improve the economic feasibility of the Circulation Booster concept.
Energy Reports arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Reports arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Jan Eric Thorsen; Svend Svendsen; Kevin Michael Smith; Torben Ommen; Morten Skov;With increasing focus on the performance of district heating systems, a concept is developed to obtain low district heating return temperatures from domestic hot water systems with a high share of circulation loss. For these systems, it is challenging to realize a low district heating return temperature by direct heat exchange only, due to the high flow of circulation return water at 50 °C. The concept is termed Circulation Booster. The purpose of the Circulation Booster is to boost the domestic hot water circulation temperature and at the same time secure a low district heating return temperature from this part of the service. The domestic hot water circulation temperature is heated in two steps: direct heat exchange and a heat pump. The heat source for the Circulation Booster is district heating, and the heat pump itself is driven by electricity. The paper includes the field experiences from a 1-year test period, concluding that the concept is operating as intended. Further, the performance results regarding electric consumption and district heating return temperatures and an economic feasibility study are presented. The current tariff structure in Denmark related to the district heating return temperature and electric costs gives a feasible economic case for the Circulation Booster concept with a direct payback time of 5,1 years. An increasingly progressive tariff scheme for low district heating return temperature or lower electric costs could further improve the economic feasibility of the Circulation Booster concept.
Energy Reports arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Reports arrow_drop_down Online Research Database In TechnologyArticle . 2021Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.08.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Chunjun Huang; Yi Zong; Shi You; Chresten Træholt; Jan Eric Thorsen; Lars Finn Sloth Larsen;Large amounts of waste heat during the cooling process of supermarket refrigeration systems (SRS) would be released. A heat recovery strategy potentially contributes to reducing the supermarket's heating costs related to buying heat from a district heating system (DHS). This paper explores the techno-economic feasibility of heat recovery for a real SRS integrated with a heat recovery unit (HRU) in terms of designing a dynamic heat recovery control (HRC) and business models. A cost-effective HRC is firstly developed for HRU to optimally manipulate the amount of heat recovered, thereby minimizing the real-time heat recovery cost. Furthermore, the business models of heat recovery under a long-term operation are proposed based on two transactional strategies between the SRS and DHS. A field test of the dynamic heat recovery for a remote SRS in Copenhagen Nordhavn area is conducted which demonstrates the proposed HRC algorithm can have a benefit of 0.49€ from a 3-h heat recovery operation. Moreover, the one-year operation of the SRS is also simulated which proves the developed two business models of heat recovery can achieve significant savings of 93% and 41% in energy costs.
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Chunjun Huang; Yi Zong; Shi You; Chresten Træholt; Jan Eric Thorsen; Lars Finn Sloth Larsen;Large amounts of waste heat during the cooling process of supermarket refrigeration systems (SRS) would be released. A heat recovery strategy potentially contributes to reducing the supermarket's heating costs related to buying heat from a district heating system (DHS). This paper explores the techno-economic feasibility of heat recovery for a real SRS integrated with a heat recovery unit (HRU) in terms of designing a dynamic heat recovery control (HRC) and business models. A cost-effective HRC is firstly developed for HRU to optimally manipulate the amount of heat recovered, thereby minimizing the real-time heat recovery cost. Furthermore, the business models of heat recovery under a long-term operation are proposed based on two transactional strategies between the SRS and DHS. A field test of the dynamic heat recovery for a remote SRS in Copenhagen Nordhavn area is conducted which demonstrates the proposed HRC algorithm can have a benefit of 0.49€ from a 3-h heat recovery operation. Moreover, the one-year operation of the SRS is also simulated which proves the developed two business models of heat recovery can achieve significant savings of 93% and 41% in energy costs.
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Elsevier BV Funded by:EC | ARVEC| ARVAuthors: Jan Eric Thorsen; Oddgeir Gudmundsson; Michele Tunzi; Torben Esbensen;The transition toward greener district heating (DH) systems is supported by the low-temperature operation of building heating systems. In addition to reducing the DH supply temperature it is necessary to parallelly decrease the DH return temperature. A common bottleneck in lowering DH return temperatures are multi-apartment buildings operating with domestic hot water (DHW) circulation loops. The most common substation design in existing systems heat the DHW circulation using the DHW heat exchanger (HEX). However, as the DHW circulation return temperature is high and the DHW circulation energy demand is relatively high as well, it often results in high DH return temperatures from the building. To address this challenge, this study investigated an innovative design for future-proof DHW substations for large multi-apartment buildings. In the new design, the DHW and DHW circulation loop are decoupled, each utilizing a dedicated HEX for its specific purpose. This new design enables aftercooling the high DH return temperature from the DHW circulation by channeling all, or part, of the return water through the space heating HEX. For the building case examples presented in this study, the DH return temperature reduction potentials are in the range of 5.4 °C–8.3 °C for the 4G temperature profiles.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Elsevier BV Funded by:EC | ARVEC| ARVAuthors: Jan Eric Thorsen; Oddgeir Gudmundsson; Michele Tunzi; Torben Esbensen;The transition toward greener district heating (DH) systems is supported by the low-temperature operation of building heating systems. In addition to reducing the DH supply temperature it is necessary to parallelly decrease the DH return temperature. A common bottleneck in lowering DH return temperatures are multi-apartment buildings operating with domestic hot water (DHW) circulation loops. The most common substation design in existing systems heat the DHW circulation using the DHW heat exchanger (HEX). However, as the DHW circulation return temperature is high and the DHW circulation energy demand is relatively high as well, it often results in high DH return temperatures from the building. To address this challenge, this study investigated an innovative design for future-proof DHW substations for large multi-apartment buildings. In the new design, the DHW and DHW circulation loop are decoupled, each utilizing a dedicated HEX for its specific purpose. This new design enables aftercooling the high DH return temperature from the DHW circulation by channeling all, or part, of the return water through the space heating HEX. For the building case examples presented in this study, the DH return temperature reduction potentials are in the range of 5.4 °C–8.3 °C for the 4G temperature profiles.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2024Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2024.130750&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Funded by:EC | FLEXYNETSEC| FLEXYNETSHenrik Lund; Poul Alberg Østergaard; Tore Bach Nielsen; Sven Werner; Jan Eric Thorsen; Oddgeir Gudmundsson; Ahmad Arabkoohsar; Brian Vad Mathiesen;Fourth-generation district heating (4GDH) has been used as a label or expression since 2008 to describe a transition path for decarbonization of the district heating sector and was defined in more detail in 2014. During recent years, several papers have been published on a concept called fifth generation district heating and cooling (5GDHC). This article identifies differences and similarities between 4GDH and 5GDHC regarding aims and abilities. The analysis shows that these two are common not only in the overarching aim of decarbonization but that they also to some extent share the five essential abilities first defined for 4GDH. The main driver for 5GDHC has been a strong focus on combined heating and cooling, using a collective network close to ambient temperature levels as common heat source or sink for building-level heat pumps. It is found that 5GDHC can be regarded as a promising technology with its own merits, yet a complementary technology that may coexist in parallel with other 4GDH technologies. However, the term “generation” implies a chronological succession, and the label 5GDHC does not seem compatible with the established labels 1GDH to 4GDH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 218 citations 218 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Funded by:EC | FLEXYNETSEC| FLEXYNETSHenrik Lund; Poul Alberg Østergaard; Tore Bach Nielsen; Sven Werner; Jan Eric Thorsen; Oddgeir Gudmundsson; Ahmad Arabkoohsar; Brian Vad Mathiesen;Fourth-generation district heating (4GDH) has been used as a label or expression since 2008 to describe a transition path for decarbonization of the district heating sector and was defined in more detail in 2014. During recent years, several papers have been published on a concept called fifth generation district heating and cooling (5GDHC). This article identifies differences and similarities between 4GDH and 5GDHC regarding aims and abilities. The analysis shows that these two are common not only in the overarching aim of decarbonization but that they also to some extent share the five essential abilities first defined for 4GDH. The main driver for 5GDHC has been a strong focus on combined heating and cooling, using a collective network close to ambient temperature levels as common heat source or sink for building-level heat pumps. It is found that 5GDHC can be regarded as a promising technology with its own merits, yet a complementary technology that may coexist in parallel with other 4GDH technologies. However, the term “generation” implies a chronological succession, and the label 5GDHC does not seem compatible with the established labels 1GDH to 4GDH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 218 citations 218 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu