- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 01 Feb 2025 SwitzerlandPublisher:Wiley Isabelle S. Helfenstein; Joan T. Sturm; Bernhard Schmid; Alexander Damm; Meredith C. Schuman; Felix Morsdorf;ABSTRACTClimate extremes such as droughts are expected to increase in frequency and intensity with global change. Therefore, it is important to map and predict ecosystem responses to such extreme events to maintain ecosystem functions and services. Alongside abiotic factors, biotic factors such as the proportion of needle and broadleaf trees were found to affect forest drought responses, corroborating results from biodiversity–ecosystem functioning (BEF) experiments. Yet it remains unclear to what extent the behavior of non‐experimental systems at large scales corresponds to the relationships discovered in BEF experiments. Using remote sensing, the trait‐based functional diversity of forest ecosystems can be directly quantified. We investigated the relationship between remotely sensed functional richness and evenness and forest drought responses using data from temperate mixed forests in Switzerland, which experienced an extremely hot and dry summer in 2018. We used Sentinel‐2 satellite data to assess aspects of functional diversity and quantified drought response in terms of resistance, recovery, and resilience from 2017 to 2020 in a scalable approach. We then analyzed the BEF relationship between functional diversity measures and drought response for different aggregation levels of richness and evenness of three physiological canopy traits (chlorophyll, carotenoid/chlorophyll ratio, and equivalent water thickness). Forest stands with greater trait richness were more resistant and resilient to the drought event, and the relationship of trait evenness with resistance or resilience was hump‐shaped or negative, respectively. These results suggest forest functional diversity can support forests in such drought responses via a mixture of complementarity and dominance effects, the first indicated by positive richness effects and the second by negative evenness effects. Our results link ecosystem functioning and biodiversity at large scales and provide new insights into the BEF relationships in non‐experimental forest ecosystems.
Global Change Biolog... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2025License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2025License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Funded by:DFGDFGTing Tang; Bernhard Schmid; Meredith C. Schuman; Franca J. Bongers; Shan Li; Yu Liang; Sofia J. van Moorsel; Goddert von Oheimb; Walter Durka; Helge Bruelheide; Keping Ma; Xiaojuan Liu;doi: 10.1111/nph.70130
pmid: 40183224
Summary Afforestation projects using species mixtures are expected to better support ecosystem services than monoculture plantations. While grassland studies have shown natural selection favoring high‐performance genotypes in species‐rich communities, this has not been explored in forests. We used seed‐family identity (known maternity) to represent genetic identity and investigated how this affected the biomass accumulation (i.e. growth) of individual trees (n = 13 435) along a species richness gradient (1–16 species) and over stand age (9 yr) in a forest biodiversity experiment. We found that among the eight species tested, different seed families responded differently to species richness, some of them growing relatively better in low‐diversity plots and others in high‐diversity plots. Furthermore, within‐species growth variation increased with species richness and stand age, while between‐species variation decreased with stand age. These results indicate that seed families within species and their reaction norms along the species richness gradient vary considerably and thus can explain a substantial proportion of the overall variation in tree growth. Our findings suggest that the growth and associated ecosystem services of species‐rich mixtures in afforestation projects can be optimized by artificially selecting seed families with high mixture performance in biodiversity experiments.
Research@WUR arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Research@WUR arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Erica McGale; Celia Diezel; Meredith C. Schuman; Ian T. Baldwin;doi: 10.1111/nph.15207
pmid: 29754424
Summary Plants are the primary producers in most terrestrial ecosystems and have complex defense systems to protect their produce. Defense‐deficient, high‐yielding agricultural monocultures attract abundant nonhuman consumers, but are alternatively defended through pesticide application and genetic engineering to produce insecticidal proteins such as Cry1Ac (Bacillus thuringiensis). These approaches alter the balance between yield protection and maximization but have been poorly contextualized to known yield–defense trade‐offs in wild plants. The native plant Nicotiana attenuata was used to compare yield benefits of plants transformed to be defenseless to those with a full suite of naturally evolved defenses, or additionally transformed to ectopically produce Cry1Ac. An insecticide treatment allowed us to examine yield under different herbivore loads in N. attenuata's native habitat. Cry1Ac, herbivore damage, and growth parameters were monitored throughout the season. Biomass and reproductive correlates were measured at season end. Non‐Cry1Ac‐targeted herbivores dominated on noninsecticide‐treated plants, and increased the yield drag of Cry1Ac‐producing plants in comparison with endogenously defended or undefended plants. Insecticide‐sprayed Cry1Ac‐producing plants lagged less in stalk height, shoot biomass, and flower production. In direct comparison with the endogenous defenses of a native plant, Cry1Ac production did not provide yield benefits for plants under observed herbivore loads in a field study.
New Phytologist arrow_drop_down New PhytologistArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 01 Feb 2025 SwitzerlandPublisher:Wiley Isabelle S. Helfenstein; Joan T. Sturm; Bernhard Schmid; Alexander Damm; Meredith C. Schuman; Felix Morsdorf;ABSTRACTClimate extremes such as droughts are expected to increase in frequency and intensity with global change. Therefore, it is important to map and predict ecosystem responses to such extreme events to maintain ecosystem functions and services. Alongside abiotic factors, biotic factors such as the proportion of needle and broadleaf trees were found to affect forest drought responses, corroborating results from biodiversity–ecosystem functioning (BEF) experiments. Yet it remains unclear to what extent the behavior of non‐experimental systems at large scales corresponds to the relationships discovered in BEF experiments. Using remote sensing, the trait‐based functional diversity of forest ecosystems can be directly quantified. We investigated the relationship between remotely sensed functional richness and evenness and forest drought responses using data from temperate mixed forests in Switzerland, which experienced an extremely hot and dry summer in 2018. We used Sentinel‐2 satellite data to assess aspects of functional diversity and quantified drought response in terms of resistance, recovery, and resilience from 2017 to 2020 in a scalable approach. We then analyzed the BEF relationship between functional diversity measures and drought response for different aggregation levels of richness and evenness of three physiological canopy traits (chlorophyll, carotenoid/chlorophyll ratio, and equivalent water thickness). Forest stands with greater trait richness were more resistant and resilient to the drought event, and the relationship of trait evenness with resistance or resilience was hump‐shaped or negative, respectively. These results suggest forest functional diversity can support forests in such drought responses via a mixture of complementarity and dominance effects, the first indicated by positive richness effects and the second by negative evenness effects. Our results link ecosystem functioning and biodiversity at large scales and provide new insights into the BEF relationships in non‐experimental forest ecosystems.
Global Change Biolog... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2025License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2025License: CC BYData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Funded by:DFGDFGTing Tang; Bernhard Schmid; Meredith C. Schuman; Franca J. Bongers; Shan Li; Yu Liang; Sofia J. van Moorsel; Goddert von Oheimb; Walter Durka; Helge Bruelheide; Keping Ma; Xiaojuan Liu;doi: 10.1111/nph.70130
pmid: 40183224
Summary Afforestation projects using species mixtures are expected to better support ecosystem services than monoculture plantations. While grassland studies have shown natural selection favoring high‐performance genotypes in species‐rich communities, this has not been explored in forests. We used seed‐family identity (known maternity) to represent genetic identity and investigated how this affected the biomass accumulation (i.e. growth) of individual trees (n = 13 435) along a species richness gradient (1–16 species) and over stand age (9 yr) in a forest biodiversity experiment. We found that among the eight species tested, different seed families responded differently to species richness, some of them growing relatively better in low‐diversity plots and others in high‐diversity plots. Furthermore, within‐species growth variation increased with species richness and stand age, while between‐species variation decreased with stand age. These results indicate that seed families within species and their reaction norms along the species richness gradient vary considerably and thus can explain a substantial proportion of the overall variation in tree growth. Our findings suggest that the growth and associated ecosystem services of species‐rich mixtures in afforestation projects can be optimized by artificially selecting seed families with high mixture performance in biodiversity experiments.
Research@WUR arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Research@WUR arrow_drop_down New PhytologistArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Erica McGale; Celia Diezel; Meredith C. Schuman; Ian T. Baldwin;doi: 10.1111/nph.15207
pmid: 29754424
Summary Plants are the primary producers in most terrestrial ecosystems and have complex defense systems to protect their produce. Defense‐deficient, high‐yielding agricultural monocultures attract abundant nonhuman consumers, but are alternatively defended through pesticide application and genetic engineering to produce insecticidal proteins such as Cry1Ac (Bacillus thuringiensis). These approaches alter the balance between yield protection and maximization but have been poorly contextualized to known yield–defense trade‐offs in wild plants. The native plant Nicotiana attenuata was used to compare yield benefits of plants transformed to be defenseless to those with a full suite of naturally evolved defenses, or additionally transformed to ectopically produce Cry1Ac. An insecticide treatment allowed us to examine yield under different herbivore loads in N. attenuata's native habitat. Cry1Ac, herbivore damage, and growth parameters were monitored throughout the season. Biomass and reproductive correlates were measured at season end. Non‐Cry1Ac‐targeted herbivores dominated on noninsecticide‐treated plants, and increased the yield drag of Cry1Ac‐producing plants in comparison with endogenously defended or undefended plants. Insecticide‐sprayed Cry1Ac‐producing plants lagged less in stalk height, shoot biomass, and flower production. In direct comparison with the endogenous defenses of a native plant, Cry1Ac production did not provide yield benefits for plants under observed herbivore loads in a field study.
New Phytologist arrow_drop_down New PhytologistArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu