- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Wiley Erin Meyer‐Gutbrod; Li Kui; Robert Miller; Mary Nishimoto; Linda Snook; Milton Love;AbstractAnthropogenic climate change has resulted in warming temperatures and reduced oxygen concentrations in the global oceans. Much remains unknown on the impacts of reduced oxygen concentrations on the biology and distribution of marine fishes. In the Southern California Channel Islands, visual fish surveys were conducted frequently in a manned submersible at three rocky reefs between 1995 and 2009. This area is characterized by a steep bathymetric gradient, with the surveyed sites Anacapa Passage, Footprint and Piggy Bank corresponding to depths near 50, 150 and 300 m. Poisson models were developed for each fish species observed consistently in this network of rocky reefs to determine the impact of depth and year on fish peak distribution. The interaction of depth and year was significant in 23 fish types, with 19 of the modelled peak distributions shifting to a shallower depth over the surveyed time period. Across the 23 fish types, the peak distribution shoaled at an average rate of 8.7 m of vertical depth per decade. Many of the species included in the study, including California sheephead, copper rockfish and blue rockfish, are targeted by commercial and recreational fisheries. CalCOFI hydrographic samples are used to demonstrate significant declines in dissolved oxygen at stations near the survey sites which are forced by a combination of natural multidecadal oscillations and anthropogenic climate change. This study demonstrates in situ fish depth distribution shifts over a 15‐year period concurrent with oxygen decline. Climate‐driven distribution shifts in response to deoxygenation have important implications for fisheries management, including habitat reduction, habitat compression, novel trophic dynamics and reduced body condition. Continued efforts to predict the formation and severity of hypoxic zones and their impact on fisheries dynamics will be essential to guiding effective placement of protected areas and fisheries regulations.
University of South ... arrow_drop_down University of South Carolina Libraries: Scholar CommonsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of South ... arrow_drop_down University of South Carolina Libraries: Scholar CommonsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:The Oceanography Society Authors: Erin Meyer-Gutbrod; Charles H. Greene;Despite an elevated mortality rate from lethal interactions with humans, the North Atlantic right whale population has continued to grow during the first decade of the new millennium. This unexpected population growth is the result of a 128% increase in female-specific reproduction relative to the 1990s. Here, we demonstrate that the recent increase in annual right whale calf production is linked to a dramatic increase in the abundance of its major prey, the copepod species Calanus finmarchicus, in the Gulf of Maine. The resurgence of C. finmarchicus was associated with a regime shift remotely forced by climatic changes in the Arctic. We conclude that decadal-scale variability in right whale reproduction may be largely driven by fluctuations in prey availability linked to climate-associated ecosystem regime shifts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Wiley Erin Meyer‐Gutbrod; Li Kui; Robert Miller; Mary Nishimoto; Linda Snook; Milton Love;AbstractAnthropogenic climate change has resulted in warming temperatures and reduced oxygen concentrations in the global oceans. Much remains unknown on the impacts of reduced oxygen concentrations on the biology and distribution of marine fishes. In the Southern California Channel Islands, visual fish surveys were conducted frequently in a manned submersible at three rocky reefs between 1995 and 2009. This area is characterized by a steep bathymetric gradient, with the surveyed sites Anacapa Passage, Footprint and Piggy Bank corresponding to depths near 50, 150 and 300 m. Poisson models were developed for each fish species observed consistently in this network of rocky reefs to determine the impact of depth and year on fish peak distribution. The interaction of depth and year was significant in 23 fish types, with 19 of the modelled peak distributions shifting to a shallower depth over the surveyed time period. Across the 23 fish types, the peak distribution shoaled at an average rate of 8.7 m of vertical depth per decade. Many of the species included in the study, including California sheephead, copper rockfish and blue rockfish, are targeted by commercial and recreational fisheries. CalCOFI hydrographic samples are used to demonstrate significant declines in dissolved oxygen at stations near the survey sites which are forced by a combination of natural multidecadal oscillations and anthropogenic climate change. This study demonstrates in situ fish depth distribution shifts over a 15‐year period concurrent with oxygen decline. Climate‐driven distribution shifts in response to deoxygenation have important implications for fisheries management, including habitat reduction, habitat compression, novel trophic dynamics and reduced body condition. Continued efforts to predict the formation and severity of hypoxic zones and their impact on fisheries dynamics will be essential to guiding effective placement of protected areas and fisheries regulations.
University of South ... arrow_drop_down University of South Carolina Libraries: Scholar CommonsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of South ... arrow_drop_down University of South Carolina Libraries: Scholar CommonsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:The Oceanography Society Authors: Erin Meyer-Gutbrod; Charles H. Greene;Despite an elevated mortality rate from lethal interactions with humans, the North Atlantic right whale population has continued to grow during the first decade of the new millennium. This unexpected population growth is the result of a 128% increase in female-specific reproduction relative to the 1990s. Here, we demonstrate that the recent increase in annual right whale calf production is linked to a dramatic increase in the abundance of its major prey, the copepod species Calanus finmarchicus, in the Gulf of Maine. The resurgence of C. finmarchicus was associated with a regime shift remotely forced by climatic changes in the Arctic. We conclude that decadal-scale variability in right whale reproduction may be largely driven by fluctuations in prey availability linked to climate-associated ecosystem regime shifts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5670/oceanog.2014.64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu