- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Germany, Italy, Finland, Russian Federation, Italy, Italy, Italy, France, United States, ItalyPublisher:Research Square Platform LLC Funded by:UKRI | Methane Production in the..., EC | INTAROS, NSF | Methane loss from Arctic:... +1 projectsUKRI| Methane Production in the Arctic: Under-recognized Cold Season and Upland Tundra - Arctic Methane Sources-UAMS ,EC| INTAROS ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| METHANE AT THE ZERO CURTAINZona, Donatella; Lafleur, Peter; Hufkens, Koen; Bailey, Barbara; Gioli, Beniamino; Burba, George; Goodrich, Jordan; Liljedahl, Anna; Euskirchen, Eugénie; Watts, Jennifer; Farina, Mary; Kimball, John; Heimann, Martin; Göckede, Mathias; Pallandt, Martijn; Christensen, Torben; Mastepanov, Mikhail; López-Blanco, Efrén; Jackowicz-Korczynski, Marcin; Dolman, Albertus; Marchesini, Luca Belelli; Commane, Roisin; Wofsy, Steven; Miller, Charles; Lipson, David; Hashemi, Josh; Arndt, Kyle; Kutzbach, Lars; Holl, David; Boike, Julia; Wille, Christian; Sachs, Torsten; Kalhori, Aram; Song, Xia; Xu, Xiaofeng; Humphreys, Elyn; Koven, Charles; Sonnentag, Oliver; Meyer, Gesa; Gosselin, Gabriel; Marsh, Philip; Oechel, Walter;Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic.Here we found that earlier snowmelt was associated with more net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence for a water stress that affected GPP in the peak and late growing season. Our results suggest that climate change and the associated increased length in the growing season might not benefit these northern tundra ecosystems if they are not able to continue sequestering CO2 later in the season.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/8w11b7s8Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74194Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-959226/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/8w11b7s8Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74194Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-959226/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Germany, Italy, Finland, Russian Federation, Italy, Italy, Italy, France, United States, ItalyPublisher:Research Square Platform LLC Funded by:UKRI | Methane Production in the..., EC | INTAROS, NSF | Methane loss from Arctic:... +1 projectsUKRI| Methane Production in the Arctic: Under-recognized Cold Season and Upland Tundra - Arctic Methane Sources-UAMS ,EC| INTAROS ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,NSF| METHANE AT THE ZERO CURTAINZona, Donatella; Lafleur, Peter; Hufkens, Koen; Bailey, Barbara; Gioli, Beniamino; Burba, George; Goodrich, Jordan; Liljedahl, Anna; Euskirchen, Eugénie; Watts, Jennifer; Farina, Mary; Kimball, John; Heimann, Martin; Göckede, Mathias; Pallandt, Martijn; Christensen, Torben; Mastepanov, Mikhail; López-Blanco, Efrén; Jackowicz-Korczynski, Marcin; Dolman, Albertus; Marchesini, Luca Belelli; Commane, Roisin; Wofsy, Steven; Miller, Charles; Lipson, David; Hashemi, Josh; Arndt, Kyle; Kutzbach, Lars; Holl, David; Boike, Julia; Wille, Christian; Sachs, Torsten; Kalhori, Aram; Song, Xia; Xu, Xiaofeng; Humphreys, Elyn; Koven, Charles; Sonnentag, Oliver; Meyer, Gesa; Gosselin, Gabriel; Marsh, Philip; Oechel, Walter;Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic.Here we found that earlier snowmelt was associated with more net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence for a water stress that affected GPP in the peak and late growing season. Our results suggest that climate change and the associated increased length in the growing season might not benefit these northern tundra ecosystems if they are not able to continue sequestering CO2 later in the season.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/8w11b7s8Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74194Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-959226/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/8w11b7s8Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74194Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-959226/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu