- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 Netherlands, SwedenPublisher:Wiley Renee M. van Dorst; Anna Gårdmark; Richard Svanbäck; Ulrika Beier; Gesa A. Weyhenmeyer; Magnus Huss;AbstractClimate change studies have long focused on effects of increasing temperatures, often without considering other simultaneously occurring environmental changes, such as browning of waters. Resolving how the combination of warming and browning of aquatic ecosystems affects fish biomass production is essential for future ecosystem functioning, fisheries, and food security. In this study, we analyzed individual‐ and population‐level fish data from 52 temperate and boreal lakes in Northern Europe, covering large gradients in water temperature and color (absorbance, 420 nm). We show that fish (Eurasian perch, Perca fluviatilis) biomass production decreased with both high water temperatures and brown water color, being lowest in warm and brown lakes. However, while both high temperature and brown water decreased fish biomass production, the mechanisms behind the decrease differed: temperature affected the fish biomass production mainly through a decrease in population standing stock biomass, and through shifts in size‐ and age‐distributions toward a higher proportion of young and small individuals in warm lakes; brown water color, on the other hand, mainly influenced fish biomass production through negative effects on individual body growth and length‐at‐age. In addition to these findings, we observed that the effects of temperature and brown water color on individual‐level processes varied over ontogeny. Body growth only responded positively to higher temperatures among young perch, and brown water color had a stronger negative effect on body growth of old than on young individuals. Thus, to better understand and predict future fish biomass production, it is necessary to integrate both individual‐ and population‐level responses and to acknowledge within‐species variation. Our results suggest that global climate change, leading to browner and warmer waters, may negatively affect fish biomass production, and this effect may be stronger than caused by increased temperature or water color alone.
Global Change Biolog... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Wiley Authors: Renee M. van Dorst; Anna Gårdmark; Richard Svanbäck; Magnus Huss;doi: 10.1111/eff.12605
AbstractOngoing climate change is leading to browning of many lakes and coastal areas, which can impair fish body growth and biomass production. However, whether and how effects of light limitation caused by browning on fish body growth vary over early ontogeny is unknown. In this study, we set up a mesocosm experiment to test whether roach (Rutilus rutilus) body growth responses to browning depend on body size, and if findings are robust over roach densities. We also studied a potential mechanism for size‐specific responses by conducting an aquaria experiment to test if size‐specific prey selectivity in roach changes with browning. We found that roach body growth responses to browning‐induced light limitation vary over ontogeny (independent of roach density), negatively affecting body growth of young‐of‐the‐year (YOY) but not of 1‐year‐old individuals. We also show that this difference in growth response is likely a consequence of browning‐induced alterations in zooplankton community composition and variation in prey selectivity between YOY and 1‐year‐old fish. This suggests that we should account for the diverse effects of browning over fish ontogeny, mediated via altered prey composition and ontogenetic changes in prey preference, when assessing overall impacts of browning on aquatic ecosystems.
SLU publication data... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eff.12605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eff.12605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 SwedenPublisher:Wiley Authors: Renee M. van Dorst; Anna Gårdmark; Richard Svanbäck; Magnus Huss;doi: 10.1111/fwb.13481
Abstract Browning of waters, coupled to climate change and land use changes, can strongly affect aquatic ecosystems. Browning‐induced light limitation may have negative effects on aquatic consumers via shifts in resource composition and availability and by negatively affecting foraging of consumers relying on vision. However, the extent to which light limitation caused by browning affects fish via either of these two pathways is largely unknown. Here we specifically test if fish growth responses to browning in a pelagic food web are best explained by changes in resource availability and composition due to light limitation, or by reduced foraging rates due to decreased visual conditions. To address this question, we set up a mesocosm experiment to study growth responses of two different fish species to browning and conducted an aquaria experiment to study species‐specific fish foraging responses to browning. Furthermore, we used a space‐for‐time approach to analyse fish body length‐at‐age across >40 lakes with a large gradient in lake water colour to validate experimental findings on species‐specific fish growth responses. With browning, we found an increase in chlorophyll a concentrations, shifts in zooplankton community composition, and a decrease in perch (Perca fluviatilis) but not roach (Rutilus rutilus) body growth. We conclude that fish growth responses are most likely to be linked to the observed shift in prey (zooplankton) composition. In contrast, we found limited evidence for reduced perch, but not roach, foraging rates in response to browning. This suggests that light limitation led to lower body growth of perch in brown waters mainly through shifts in resource composition and availability, perhaps in combination with decreased visibility. Finally, with the lake study we confirmed that perch but not roach body growth and length‐at‐age are negatively affected by brown waters in the wild. In conclusion, using a combination of experimental and observational data, we show that browning of lakes is likely to (continue to) result in reductions in fish body growth of perch, but not roach, as a consequence of shifts in prey availability and composition, and perhaps reduced foraging.
SLU publication data... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/fwb.13481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/fwb.13481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 Netherlands, SwedenPublisher:Wiley Renee M. van Dorst; Anna Gårdmark; Richard Svanbäck; Ulrika Beier; Gesa A. Weyhenmeyer; Magnus Huss;AbstractClimate change studies have long focused on effects of increasing temperatures, often without considering other simultaneously occurring environmental changes, such as browning of waters. Resolving how the combination of warming and browning of aquatic ecosystems affects fish biomass production is essential for future ecosystem functioning, fisheries, and food security. In this study, we analyzed individual‐ and population‐level fish data from 52 temperate and boreal lakes in Northern Europe, covering large gradients in water temperature and color (absorbance, 420 nm). We show that fish (Eurasian perch, Perca fluviatilis) biomass production decreased with both high water temperatures and brown water color, being lowest in warm and brown lakes. However, while both high temperature and brown water decreased fish biomass production, the mechanisms behind the decrease differed: temperature affected the fish biomass production mainly through a decrease in population standing stock biomass, and through shifts in size‐ and age‐distributions toward a higher proportion of young and small individuals in warm lakes; brown water color, on the other hand, mainly influenced fish biomass production through negative effects on individual body growth and length‐at‐age. In addition to these findings, we observed that the effects of temperature and brown water color on individual‐level processes varied over ontogeny. Body growth only responded positively to higher temperatures among young perch, and brown water color had a stronger negative effect on body growth of old than on young individuals. Thus, to better understand and predict future fish biomass production, it is necessary to integrate both individual‐ and population‐level responses and to acknowledge within‐species variation. Our results suggest that global climate change, leading to browner and warmer waters, may negatively affect fish biomass production, and this effect may be stronger than caused by increased temperature or water color alone.
Global Change Biolog... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SwedenPublisher:Wiley Authors: Renee M. van Dorst; Anna Gårdmark; Richard Svanbäck; Magnus Huss;doi: 10.1111/eff.12605
AbstractOngoing climate change is leading to browning of many lakes and coastal areas, which can impair fish body growth and biomass production. However, whether and how effects of light limitation caused by browning on fish body growth vary over early ontogeny is unknown. In this study, we set up a mesocosm experiment to test whether roach (Rutilus rutilus) body growth responses to browning depend on body size, and if findings are robust over roach densities. We also studied a potential mechanism for size‐specific responses by conducting an aquaria experiment to test if size‐specific prey selectivity in roach changes with browning. We found that roach body growth responses to browning‐induced light limitation vary over ontogeny (independent of roach density), negatively affecting body growth of young‐of‐the‐year (YOY) but not of 1‐year‐old individuals. We also show that this difference in growth response is likely a consequence of browning‐induced alterations in zooplankton community composition and variation in prey selectivity between YOY and 1‐year‐old fish. This suggests that we should account for the diverse effects of browning over fish ontogeny, mediated via altered prey composition and ontogenetic changes in prey preference, when assessing overall impacts of browning on aquatic ecosystems.
SLU publication data... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eff.12605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eff.12605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 SwedenPublisher:Wiley Authors: Renee M. van Dorst; Anna Gårdmark; Richard Svanbäck; Magnus Huss;doi: 10.1111/fwb.13481
Abstract Browning of waters, coupled to climate change and land use changes, can strongly affect aquatic ecosystems. Browning‐induced light limitation may have negative effects on aquatic consumers via shifts in resource composition and availability and by negatively affecting foraging of consumers relying on vision. However, the extent to which light limitation caused by browning affects fish via either of these two pathways is largely unknown. Here we specifically test if fish growth responses to browning in a pelagic food web are best explained by changes in resource availability and composition due to light limitation, or by reduced foraging rates due to decreased visual conditions. To address this question, we set up a mesocosm experiment to study growth responses of two different fish species to browning and conducted an aquaria experiment to study species‐specific fish foraging responses to browning. Furthermore, we used a space‐for‐time approach to analyse fish body length‐at‐age across >40 lakes with a large gradient in lake water colour to validate experimental findings on species‐specific fish growth responses. With browning, we found an increase in chlorophyll a concentrations, shifts in zooplankton community composition, and a decrease in perch (Perca fluviatilis) but not roach (Rutilus rutilus) body growth. We conclude that fish growth responses are most likely to be linked to the observed shift in prey (zooplankton) composition. In contrast, we found limited evidence for reduced perch, but not roach, foraging rates in response to browning. This suggests that light limitation led to lower body growth of perch in brown waters mainly through shifts in resource composition and availability, perhaps in combination with decreased visibility. Finally, with the lake study we confirmed that perch but not roach body growth and length‐at‐age are negatively affected by brown waters in the wild. In conclusion, using a combination of experimental and observational data, we show that browning of lakes is likely to (continue to) result in reductions in fish body growth of perch, but not roach, as a consequence of shifts in prey availability and composition, and perhaps reduced foraging.
SLU publication data... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/fwb.13481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/fwb.13481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu