- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG J.I. Guerrero; Enrique Personal; Antonio García; Antonio Parejo; Francisco Pérez; Carlos León;doi: 10.3390/en12122402
Electric vehicle fleets and smart grids are two growing technologies. These technologies have provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, a comparison of several evolutionary algorithms—namely genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution—is shown, in order to evaluate the proposed architecture. The proposed solution is presented as a means to prevent overload of the power grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Joaquin Luque; Alejandro Carrasco; Enrique Personal; Francisco Pérez; Carlos León;The increasing competition in the electric sector is challenging retail companies as they must assign its commercial efforts to attract the most profitable customers. Those are whose energy demand best fit certain target profiles, which usually depend on generation or cost policies. But, even when the demand profile is available, it is in an anonymous way, preventing its association to a particular client. In this paper, we explore a large dataset containing several millions of monthly demand profiles in Spain and use the available information about the associated economic sector and location for an indirect identification of the customers. The distance of the demand profile from the target is used to define a key performance indicator (KPI) which is used as the main driver of the proposed marketing strategy. The combined use of activity and location has been revealed as a powerful tool for indirect identification of customers, as 100,000 customers are uniquely identified, while about 300,000 clients are identifiable in small sets containing 10 or less consumers. To assess the proposed marketing strategy, it has been compared to the random attraction of new clients, showing a reduction of distance from the target of 40% for 10,000 new customers.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3239635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3239635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Diego Francisco Larios; Enrique Personal; Antonio Parejo; Sebastián García; Antonio García; Carlos Leon;doi: 10.3390/en13061333
The complexity of power systems is rising mainly due to the expansion of renewable energy generation. Due to the enormous variability and uncertainty associated with these types of resources, they require sophisticated planning tools so that they can be used appropriately. In this sense, several tools for the simulation of renewable energy assets have been proposed. However, they are traditionally focused on the simulation of the generation process, leaving the operation of these systems in the background. Conversely, more expert SCADA operators for the management of renewable power plants are required, but their training is not an easy task. SCADA operation is usually complex, due to the wide set of information available. In this sense, simulation or co-simulation tools can clearly help to reduce the learning curve and improve their skills. Therefore, this paper proposes a useful simulator based on a JavaScript engine that can be easily connected to any renewable SCADAs, making it possible to perform different simulated scenarios for novel operator training, as if it were a real facility. Using this tool, the administrators can easily program those scenarios allowing them to sort out the lack of support found in setting up facilities and training of novel operator tasks. Additionally, different renewable energy generation models that can be implemented in the proposed simulator are described. Later, as a use example of this tool, a study case is also performed. It proposes three different wind farm generation facility models, based on different turbine models: one with the essential generation turbine function obtained from the manufacturer curve, another with an empirical model using monotonic splines, and the last one adding the most important operational states, making it possible to demonstrate the usefulness of the proposed simulation tool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV García, Sebastián; Parejo, Antonio; Personal, Enrique; Guerrero, Juan Ignacio; Biscarri, Félix; León, Carlos;Since the emergence of the virus that causes COVID-19 (the SARS-CoV-2) in Wuhan in December 2019, societies all around the world have had to change their normal life patterns due to the restrictions and lockdowns imposed by governments. These changes in life patterns have a direct reflection on energy consumption. Thanks to Smart Grid technologies, specifically to the Advance Metering Infrastructure at secondary distribution network, this impact can be evaluated even at the customer level. Thus, this paper analyzes the consumption behavior and the impact that this crisis has had using Smart Meter data. The proposed approach includes the selection and normalization of features, automatic clustering, the obtaining of the estimated consumption without considering the crisis (at short and mid-terms) and the impact evaluation. The proposed approach has been tested on a case with a real Smart Meter infrastructure from Manzanilla (Huelva, Spain). The results of this use case showed that residential customers have increased their consumption around 15% during full lockdown and 7.5% during the reopening period. In contrast, globally, non-residential customers have decreased their consumption 38% during full lockdown and 14.5% during the reopening period. However, referring to non-residential customers, five different consumption profiles were found with different short-term and mid-term behaviors during the COVID crisis. The different behavior found shows customers who have maintained their normal consumption during the lockdown, others who have reduced it (to a greater or lesser extent) and have not recovered it after the removal of the restrictions, and others who have reduced the consumption but then they recovered it when the restrictions were removed. The metadata of the customers in each behavior cluster found are highly correlated to the restrictions imposed to control the spread of the virus. This study shows evidence about the proposed approach usefulness to analyze the behavior and the impact at customer level during the COVID-19 crisis.
Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:MDPI AG Funded by:EC | KNOHOLEMEC| KNOHOLEMAuthors: Manuel Peña; Félix Biscarri; Enrique Personal; Carlos León;In this paper, an intelligent data analysis method for modeling and optimizing energy efficiency in smart buildings through Data Analytics (DA) is proposed. The objective of this proposal is to provide a Decision Support System (DSS) able to support experts in quantifying and optimizing energy efficiency in smart buildings, as well as reveal insights that support the detection of anomalous behaviors in early stages. Firstly, historical data and Energy Efficiency Indicators (EEIs) of the building are analyzed to extract the knowledge from behavioral patterns of historical data of the building. Then, using this knowledge, a classification method to compare days with different features, seasons and other characteristics is proposed. The resulting clusters are further analyzed, inferring key features to predict and quantify energy efficiency on days with similar features but with potentially different behaviors. Finally, the results reveal some insights able to highlight inefficiencies and correlate anomalous behaviors with EE in the smart building. The approach proposed in this work was tested on the BlueNet building and also integrated with Eugene, a commercial EE tool for optimizing energy consumption in smart buildings.
Sensors arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022Data sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022Data sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Enrique Personal; Juan Ignacio Guerrero; Antonio Garcia; Manuel Peña; Carlos Leon;Abstract In the last few years, the Smart Grid concept has gained ground in the power utility scope. However, due to its multidisciplinary character (involving a stack of technologies) it is very difficult to assess the overall project success. Due to this a metric is required. In this paper, the authors review the existing metrics and (based on their experience within the Smart Grid demonstration project “Smartcity Malaga”), propose a new approach of business intelligence to bring about a new metric or set of key performance indicators for its rating. An advantage of this metric is its capacity to assist in this task. Its usefulness is also complemented with a planning tool that enables us to assess the effects of each technology under potential scenarios. This information is useful for planning projects, allowing us to make the most appropriate decisions each moment. Ultimately, this usefulness is clearly demonstrated through two case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.09.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.09.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Juan Ignacio Guerrero Alonso; Enrique Personal; Sebastián García; Antonio Parejo; +5 AuthorsJuan Ignacio Guerrero Alonso; Enrique Personal; Sebastián García; Antonio Parejo; Mansueto Rossi; Antonio García; Federico Delfino; Ricardo Pérez; Carlos León;Nowadays, Distribution System Operators are increasing the digitalization of their smart grids, making it possible to measure and manage their state at any time. However, with the massive eruption of change-distributed generation (e.g., renewable resources, electric vehicles), the grid operation have become more complex, requiring specific technologies to balance it. In this sense, the demand-side management is one of its techniques; the demand response is a promising approach for providing Flexibility Services (FSs) and complying with the regulatory directives of the energy market. As a solution, this paper proposes the use of the OpenADR (Open Automated Demand Response) standard protocol in combination with a Decentralized Permissioned Market Place (DPMP) based on Blockchain. On one hand, OpenADR hierarchical architecture based on distributed nodes provides communication between stakeholders, adding monitoring and management services. Further, this architecture is compatible with an aggregator schema that guarantees the compliance with the strictest regulatory framework (i.e., European market). On the other hand, DPMP is included at different levels of this architecture, providing a global solution to Flexibility Service Providers (FSP) that can be adapted depending on the regulation of a specific country. As a proof of concept, this paper shows the result of a real experimental case, which implements a Capacity Bidding Program where the OpenADR protocol is used as a communication method to control and monitor energy consumption. In parallel, the proposed DPMP based on Blockchain makes it possible to manage the incentives of FSs, enabling the integration of local and global markets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20216266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20216266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Guerrero Alonso, Juan Ignacio; Personal, Enrique; García, Sebastián; Parejo, Antonio; +4 AuthorsGuerrero Alonso, Juan Ignacio; Personal, Enrique; García, Sebastián; Parejo, Antonio; Rossi, Mansueto; García, Antonio; Pérez, Ricardo; Leon, Carlos;The mission of distribution system operators (DSOs) is to operate and manage distribution networks in a safe and secure manner. DSOs are also responsible for developing distribution grids to ensure the long-term ability of a system to deliver high-quality services to users and other stakeholders of the electric power system. Traditionally, DSOs have carried out their mission through adequate network operation and planning. However, the profound transformation of the energy system that is currently taking place worldwide creates new challenges for DSOs to carry out their responsibilities in a cost-efficient and secure manner. A significant number of renewable energy sources (RESs) are already connected, and more are expected in the future. Furthermore, the number of electric vehicles (EVs) and public charging stations will see a major increase in the coming years. These trends are coupled with an exponential technological evolution that enables decentralized energy sources to be connected at lower voltages and, at the same time, enables customers to interact with the market in response to grid conditions.
idUS. Depósito de In... arrow_drop_down idUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaIEEE Power and Energy MagazineArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mpe.2020.3000688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert idUS. Depósito de In... arrow_drop_down idUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaIEEE Power and Energy MagazineArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mpe.2020.3000688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Antonio Parejo; Sebastián García; Enrique Personal; Juan Ignacio Guerrero; Antonio García; Carlos Leon;Nowadays, the presence of renewable generation systems and mobile loads (i.e., electric vehicle) spread throughout the distribution network is increasing. The problem is that this type of system introduces an added difficulty since they present a strong dependence on the meteorology and the mobility needs of the users. This problem forces the distribution system operators to seek tools that make it possible to balance the relationship between consumption and generation. In this sense, automated demand response systems are an appropriate solution that allow the operator to request specific reductions in customers’ consumption, offering a discount to the customer and avoiding network congestion. This paper analyzes the implementation and architecture of a demand response solution based on OpenADR standard and its possible integration with a building management system through a use case. As will be analyzed, a key part of the architecture is the measurement system based on smart meters acting as sensors. This is the base of the auditing system which makes it possible to verify compliance with the consumption reduction agreements. Additionally, this study is completed with a parallel auditing system which makes it possible to verify compliance with the consumption reduction agreements. All of the proposed demand response cycle is implemented as a proof of concept in a classroom in the Escuela Politécnica Superior at the University of Seville, which makes it possible to identify the advantages of this architecture in the ambit of connection between distribution network and buildings.
Sensors arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21041204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21041204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: García, Sebastián; Mora-Merchán, Javier María; Larios, Diego Francisco; Personal, Enrique; +2 AuthorsGarcía, Sebastián; Mora-Merchán, Javier María; Larios, Diego Francisco; Personal, Enrique; Parejo, Antonio; León, Carlos;Knowledge of customer phase connection in low-voltage distribution networks is important for Distribution System Operators (DSOs). This paper presents a novel data-driven phase identification method based on Bayesian inference, which uses load consumption profiles as inputs. This method uses a non-linear function to establish the probability of a customer being connected to a given phase, based on variations in the customer’s consumption and those in the phase feeders. Owing to the Bayesian inference, the proposed method can provide up-to-date certainty about the phase connection of each customer. To improve the detection of those customers that are more difficult to identify, after obtaining the up-to-date certainty for all users, the consumption of those who have an up-to-date certainty above a certain percentile compared with the rest of the substation (those that are more likely to be correctly classified) is subtracted from the phase in which they are classified. The performance of the proposed method was evaluated using a real (non-synthetic) low-voltage distribution network. Favourable results (with accuracies higher than 97 %) were obtained in almost all cases, regardless of the percentage of Smart Meter penetration and the size of the substation. A comparison with other state-of-the-art methods showed that the proposed method outperforms (or equals) them. The proposed method does not necessarily require previously labelled data; however, it can handle them even if they contain errors. Having previous information (partial or complete) increases the performance of phase identification, making it possible to correct erroneous previous labelling.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2022.108525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2022.108525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG J.I. Guerrero; Enrique Personal; Antonio García; Antonio Parejo; Francisco Pérez; Carlos León;doi: 10.3390/en12122402
Electric vehicle fleets and smart grids are two growing technologies. These technologies have provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, a comparison of several evolutionary algorithms—namely genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution—is shown, in order to evaluate the proposed architecture. The proposed solution is presented as a means to prevent overload of the power grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12122402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Joaquin Luque; Alejandro Carrasco; Enrique Personal; Francisco Pérez; Carlos León;The increasing competition in the electric sector is challenging retail companies as they must assign its commercial efforts to attract the most profitable customers. Those are whose energy demand best fit certain target profiles, which usually depend on generation or cost policies. But, even when the demand profile is available, it is in an anonymous way, preventing its association to a particular client. In this paper, we explore a large dataset containing several millions of monthly demand profiles in Spain and use the available information about the associated economic sector and location for an indirect identification of the customers. The distance of the demand profile from the target is used to define a key performance indicator (KPI) which is used as the main driver of the proposed marketing strategy. The combined use of activity and location has been revealed as a powerful tool for indirect identification of customers, as 100,000 customers are uniquely identified, while about 300,000 clients are identifiable in small sets containing 10 or less consumers. To assess the proposed marketing strategy, it has been compared to the random attraction of new clients, showing a reduction of distance from the target of 40% for 10,000 new customers.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3239635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaIEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3239635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Diego Francisco Larios; Enrique Personal; Antonio Parejo; Sebastián García; Antonio García; Carlos Leon;doi: 10.3390/en13061333
The complexity of power systems is rising mainly due to the expansion of renewable energy generation. Due to the enormous variability and uncertainty associated with these types of resources, they require sophisticated planning tools so that they can be used appropriately. In this sense, several tools for the simulation of renewable energy assets have been proposed. However, they are traditionally focused on the simulation of the generation process, leaving the operation of these systems in the background. Conversely, more expert SCADA operators for the management of renewable power plants are required, but their training is not an easy task. SCADA operation is usually complex, due to the wide set of information available. In this sense, simulation or co-simulation tools can clearly help to reduce the learning curve and improve their skills. Therefore, this paper proposes a useful simulator based on a JavaScript engine that can be easily connected to any renewable SCADAs, making it possible to perform different simulated scenarios for novel operator training, as if it were a real facility. Using this tool, the administrators can easily program those scenarios allowing them to sort out the lack of support found in setting up facilities and training of novel operator tasks. Additionally, different renewable energy generation models that can be implemented in the proposed simulator are described. Later, as a use example of this tool, a study case is also performed. It proposes three different wind farm generation facility models, based on different turbine models: one with the essential generation turbine function obtained from the manufacturer curve, another with an empirical model using monotonic splines, and the last one adding the most important operational states, making it possible to demonstrate the usefulness of the proposed simulation tool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV García, Sebastián; Parejo, Antonio; Personal, Enrique; Guerrero, Juan Ignacio; Biscarri, Félix; León, Carlos;Since the emergence of the virus that causes COVID-19 (the SARS-CoV-2) in Wuhan in December 2019, societies all around the world have had to change their normal life patterns due to the restrictions and lockdowns imposed by governments. These changes in life patterns have a direct reflection on energy consumption. Thanks to Smart Grid technologies, specifically to the Advance Metering Infrastructure at secondary distribution network, this impact can be evaluated even at the customer level. Thus, this paper analyzes the consumption behavior and the impact that this crisis has had using Smart Meter data. The proposed approach includes the selection and normalization of features, automatic clustering, the obtaining of the estimated consumption without considering the crisis (at short and mid-terms) and the impact evaluation. The proposed approach has been tested on a case with a real Smart Meter infrastructure from Manzanilla (Huelva, Spain). The results of this use case showed that residential customers have increased their consumption around 15% during full lockdown and 7.5% during the reopening period. In contrast, globally, non-residential customers have decreased their consumption 38% during full lockdown and 14.5% during the reopening period. However, referring to non-residential customers, five different consumption profiles were found with different short-term and mid-term behaviors during the COVID crisis. The different behavior found shows customers who have maintained their normal consumption during the lockdown, others who have reduced it (to a greater or lesser extent) and have not recovered it after the removal of the restrictions, and others who have reduced the consumption but then they recovered it when the restrictions were removed. The metadata of the customers in each behavior cluster found are highly correlated to the restrictions imposed to control the spread of the virus. This study shows evidence about the proposed approach usefulness to analyze the behavior and the impact at customer level during the COVID-19 crisis.
Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:MDPI AG Funded by:EC | KNOHOLEMEC| KNOHOLEMAuthors: Manuel Peña; Félix Biscarri; Enrique Personal; Carlos León;In this paper, an intelligent data analysis method for modeling and optimizing energy efficiency in smart buildings through Data Analytics (DA) is proposed. The objective of this proposal is to provide a Decision Support System (DSS) able to support experts in quantifying and optimizing energy efficiency in smart buildings, as well as reveal insights that support the detection of anomalous behaviors in early stages. Firstly, historical data and Energy Efficiency Indicators (EEIs) of the building are analyzed to extract the knowledge from behavioral patterns of historical data of the building. Then, using this knowledge, a classification method to compare days with different features, seasons and other characteristics is proposed. The resulting clusters are further analyzed, inferring key features to predict and quantify energy efficiency on days with similar features but with potentially different behaviors. Finally, the results reveal some insights able to highlight inefficiencies and correlate anomalous behaviors with EE in the smart building. The approach proposed in this work was tested on the BlueNet building and also integrated with Eugene, a commercial EE tool for optimizing energy consumption in smart buildings.
Sensors arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022Data sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022Data sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s22041380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Enrique Personal; Juan Ignacio Guerrero; Antonio Garcia; Manuel Peña; Carlos Leon;Abstract In the last few years, the Smart Grid concept has gained ground in the power utility scope. However, due to its multidisciplinary character (involving a stack of technologies) it is very difficult to assess the overall project success. Due to this a metric is required. In this paper, the authors review the existing metrics and (based on their experience within the Smart Grid demonstration project “Smartcity Malaga”), propose a new approach of business intelligence to bring about a new metric or set of key performance indicators for its rating. An advantage of this metric is its capacity to assist in this task. Its usefulness is also complemented with a planning tool that enables us to assess the effects of each technology under potential scenarios. This information is useful for planning projects, allowing us to make the most appropriate decisions each moment. Ultimately, this usefulness is clearly demonstrated through two case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.09.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.09.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Juan Ignacio Guerrero Alonso; Enrique Personal; Sebastián García; Antonio Parejo; +5 AuthorsJuan Ignacio Guerrero Alonso; Enrique Personal; Sebastián García; Antonio Parejo; Mansueto Rossi; Antonio García; Federico Delfino; Ricardo Pérez; Carlos León;Nowadays, Distribution System Operators are increasing the digitalization of their smart grids, making it possible to measure and manage their state at any time. However, with the massive eruption of change-distributed generation (e.g., renewable resources, electric vehicles), the grid operation have become more complex, requiring specific technologies to balance it. In this sense, the demand-side management is one of its techniques; the demand response is a promising approach for providing Flexibility Services (FSs) and complying with the regulatory directives of the energy market. As a solution, this paper proposes the use of the OpenADR (Open Automated Demand Response) standard protocol in combination with a Decentralized Permissioned Market Place (DPMP) based on Blockchain. On one hand, OpenADR hierarchical architecture based on distributed nodes provides communication between stakeholders, adding monitoring and management services. Further, this architecture is compatible with an aggregator schema that guarantees the compliance with the strictest regulatory framework (i.e., European market). On the other hand, DPMP is included at different levels of this architecture, providing a global solution to Flexibility Service Providers (FSP) that can be adapted depending on the regulation of a specific country. As a proof of concept, this paper shows the result of a real experimental case, which implements a Capacity Bidding Program where the OpenADR protocol is used as a communication method to control and monitor energy consumption. In parallel, the proposed DPMP based on Blockchain makes it possible to manage the incentives of FSs, enabling the integration of local and global markets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20216266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20216266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Guerrero Alonso, Juan Ignacio; Personal, Enrique; García, Sebastián; Parejo, Antonio; +4 AuthorsGuerrero Alonso, Juan Ignacio; Personal, Enrique; García, Sebastián; Parejo, Antonio; Rossi, Mansueto; García, Antonio; Pérez, Ricardo; Leon, Carlos;The mission of distribution system operators (DSOs) is to operate and manage distribution networks in a safe and secure manner. DSOs are also responsible for developing distribution grids to ensure the long-term ability of a system to deliver high-quality services to users and other stakeholders of the electric power system. Traditionally, DSOs have carried out their mission through adequate network operation and planning. However, the profound transformation of the energy system that is currently taking place worldwide creates new challenges for DSOs to carry out their responsibilities in a cost-efficient and secure manner. A significant number of renewable energy sources (RESs) are already connected, and more are expected in the future. Furthermore, the number of electric vehicles (EVs) and public charging stations will see a major increase in the coming years. These trends are coupled with an exponential technological evolution that enables decentralized energy sources to be connected at lower voltages and, at the same time, enables customers to interact with the market in response to grid conditions.
idUS. Depósito de In... arrow_drop_down idUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaIEEE Power and Energy MagazineArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mpe.2020.3000688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert idUS. Depósito de In... arrow_drop_down idUS. Depósito de Investigación Universidad de SevillaArticle . 2020License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaIEEE Power and Energy MagazineArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mpe.2020.3000688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:MDPI AG Antonio Parejo; Sebastián García; Enrique Personal; Juan Ignacio Guerrero; Antonio García; Carlos Leon;Nowadays, the presence of renewable generation systems and mobile loads (i.e., electric vehicle) spread throughout the distribution network is increasing. The problem is that this type of system introduces an added difficulty since they present a strong dependence on the meteorology and the mobility needs of the users. This problem forces the distribution system operators to seek tools that make it possible to balance the relationship between consumption and generation. In this sense, automated demand response systems are an appropriate solution that allow the operator to request specific reductions in customers’ consumption, offering a discount to the customer and avoiding network congestion. This paper analyzes the implementation and architecture of a demand response solution based on OpenADR standard and its possible integration with a building management system through a use case. As will be analyzed, a key part of the architecture is the measurement system based on smart meters acting as sensors. This is the base of the auditing system which makes it possible to verify compliance with the consumption reduction agreements. Additionally, this study is completed with a parallel auditing system which makes it possible to verify compliance with the consumption reduction agreements. All of the proposed demand response cycle is implemented as a proof of concept in a classroom in the Escuela Politécnica Superior at the University of Seville, which makes it possible to identify the advantages of this architecture in the ambit of connection between distribution network and buildings.
Sensors arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21041204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sensors arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2021License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s21041204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: García, Sebastián; Mora-Merchán, Javier María; Larios, Diego Francisco; Personal, Enrique; +2 AuthorsGarcía, Sebastián; Mora-Merchán, Javier María; Larios, Diego Francisco; Personal, Enrique; Parejo, Antonio; León, Carlos;Knowledge of customer phase connection in low-voltage distribution networks is important for Distribution System Operators (DSOs). This paper presents a novel data-driven phase identification method based on Bayesian inference, which uses load consumption profiles as inputs. This method uses a non-linear function to establish the probability of a customer being connected to a given phase, based on variations in the customer’s consumption and those in the phase feeders. Owing to the Bayesian inference, the proposed method can provide up-to-date certainty about the phase connection of each customer. To improve the detection of those customers that are more difficult to identify, after obtaining the up-to-date certainty for all users, the consumption of those who have an up-to-date certainty above a certain percentile compared with the rest of the substation (those that are more likely to be correctly classified) is subtracted from the phase in which they are classified. The performance of the proposed method was evaluated using a real (non-synthetic) low-voltage distribution network. Favourable results (with accuracies higher than 97 %) were obtained in almost all cases, regardless of the percentage of Smart Meter penetration and the size of the substation. A comparison with other state-of-the-art methods showed that the proposed method outperforms (or equals) them. The proposed method does not necessarily require previously labelled data; however, it can handle them even if they contain errors. Having previous information (partial or complete) increases the performance of phase identification, making it possible to correct erroneous previous labelling.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2022.108525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de Sevillaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2022.108525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu