- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG Ludovico Danza; Benedetta Barozzi; Lorenzo Belussi; Italo Meroni; Francesco Salamone;The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.
Buildings arrow_drop_down BuildingsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2075-5309/6/1/3/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings6010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2075-5309/6/1/3/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings6010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG Ludovico Danza; Benedetta Barozzi; Lorenzo Belussi; Italo Meroni; Francesco Salamone;The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.
Buildings arrow_drop_down BuildingsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2075-5309/6/1/3/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings6010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2075-5309/6/1/3/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings6010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 ItalyPublisher:BIAS, Milano , Italia Authors: Ludovico Danza; Alberto Dabusti; Lorenzo Belussi; Francesco Salamone;handle: 20.500.14243/337917
The analysis of the energy performance of a building involves various activities characterized by specific objectives, methodological approaches and tools. Standard quasi-stationary and dynamic calculation methods achieve results gradually more adherent to reality. This article describes a simplified methodology based on a resistive-capacitive thermal network. The developed model enables to calculate the building energy use. The energy balance is solved on an hourly basis in order to predict optimization scenarios and determine the energy saving potential. L'analisi delle prestazioni energetiche di un edificio comporta diverse attività caratterizzate da specifici obiettivi, approcci metodologici e strumenti. I metodi quasi-stazionari e dinamici raggiungono risultati via via più aderenti alla realtà. L'articolo descrive una metodologia semplificata nata dall'esigenza di avere uno step temporale orario e prevedere scenari di ottimizzazione di gestione e risparmio energetico incentrata sull'analogia elettrica secondo uno schema resistivo-capacitivo.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::20b02af1754289ef7ab2b6c9202bc0e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::20b02af1754289ef7ab2b6c9202bc0e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 ItalyPublisher:BIAS, Milano , Italia Authors: Ludovico Danza; Alberto Dabusti; Lorenzo Belussi; Francesco Salamone;handle: 20.500.14243/337917
The analysis of the energy performance of a building involves various activities characterized by specific objectives, methodological approaches and tools. Standard quasi-stationary and dynamic calculation methods achieve results gradually more adherent to reality. This article describes a simplified methodology based on a resistive-capacitive thermal network. The developed model enables to calculate the building energy use. The energy balance is solved on an hourly basis in order to predict optimization scenarios and determine the energy saving potential. L'analisi delle prestazioni energetiche di un edificio comporta diverse attività caratterizzate da specifici obiettivi, approcci metodologici e strumenti. I metodi quasi-stazionari e dinamici raggiungono risultati via via più aderenti alla realtà. L'articolo descrive una metodologia semplificata nata dall'esigenza di avere uno step temporale orario e prevedere scenari di ottimizzazione di gestione e risparmio energetico incentrata sull'analogia elettrica secondo uno schema resistivo-capacitivo.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::20b02af1754289ef7ab2b6c9202bc0e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::20b02af1754289ef7ab2b6c9202bc0e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Danza L; Belussi L; Guazzi G; Meroni I; Salamone F;handle: 20.500.14243/342834
Abstract Durability is an important aspect that has not to be neglected in ZEB design. The requirements for buildings energy needs reduction and increase of renewable energy sources stimulated designers to integrate technologies in an efficient way. This ambitious goal must meet the capacity of the technical solutions to guarantee their performances over the years. The durability of materials and technologies is a topic that warrants further analyses in order to assess the proper efficiencies and the expected lifetime of a ZEB. Typically the energy balance of a ZEB is calculated by considering the annual energy flows or rarely the whole life cycle. The most used approaches consider constant performance of materials and technical elements over the lifespan. However, the performance loss of a single element can cause an imbalance in the behavior of a ZEB, for which persists a thin balance between inlet and outlet flows. The paper provides a critical point of view on this issue paying attention on the following technical solutions implemented in a case study for which the current scientific literature provides analysis on the degradation during their lifetime: glazing systems, VIPs, PV panels and GSHPs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Danza L; Belussi L; Guazzi G; Meroni I; Salamone F;handle: 20.500.14243/342834
Abstract Durability is an important aspect that has not to be neglected in ZEB design. The requirements for buildings energy needs reduction and increase of renewable energy sources stimulated designers to integrate technologies in an efficient way. This ambitious goal must meet the capacity of the technical solutions to guarantee their performances over the years. The durability of materials and technologies is a topic that warrants further analyses in order to assess the proper efficiencies and the expected lifetime of a ZEB. Typically the energy balance of a ZEB is calculated by considering the annual energy flows or rarely the whole life cycle. The most used approaches consider constant performance of materials and technical elements over the lifespan. However, the performance loss of a single element can cause an imbalance in the behavior of a ZEB, for which persists a thin balance between inlet and outlet flows. The paper provides a critical point of view on this issue paying attention on the following technical solutions implemented in a case study for which the current scientific literature provides analysis on the degradation during their lifetime: glazing systems, VIPs, PV panels and GSHPs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 ItalyPublisher:MDPI AG Francesco Salamone; Lorenzo Belussi; Ludovico Danza; Matteo Ghellere; Italo Meroni;The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/3/338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16030338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/3/338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16030338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 ItalyPublisher:MDPI AG Francesco Salamone; Lorenzo Belussi; Ludovico Danza; Matteo Ghellere; Italo Meroni;The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/3/338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16030338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/3/338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16030338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Colla L; Fedele L; Mancin S; Danza L; Manca O;handle: 20.500.14243/296414 , 11577/3189386 , 11577/3222519 , 11591/358544
It is well known that the heat transfer associated with a phase change process is much higher than sensible enthalpy change even in forced convection. In particular, the vaporization process has been widely studied because it exploits the highest heat transfer coefficient; this heat transfer mechanism is used in both passive (i.e. heat pipes) and active (i.e. refrigerating machines) cooling devices. However, the solid-liquid phase change process is another interesting possibility to reject even high heat loads, especially when they are intermittent. The term Phase Change Materials (PCMs) commonly refers to those materials, which use the solid-liquid phase change process to adsorb and then release heat loads [1]. The present work aims at investigating the new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of PCMs, the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in paraffin waxes with melting temperature ranging between 20 °C and 70 °C. The thermophysical properties were then measured to understand the effects of the nanoparticles (material, size, and amount) on the thermal properties of both the solid and liquid PCM. These new nano-PCMs can represent an interesting way to mitigate or eliminate the intrinsic limitations in the use of paraffin waxes as PCMs for both energy storage and passive cooling applications.
CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università di PadovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.03.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu233 citations 233 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università di PadovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.03.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Colla L; Fedele L; Mancin S; Danza L; Manca O;handle: 20.500.14243/296414 , 11577/3189386 , 11577/3222519 , 11591/358544
It is well known that the heat transfer associated with a phase change process is much higher than sensible enthalpy change even in forced convection. In particular, the vaporization process has been widely studied because it exploits the highest heat transfer coefficient; this heat transfer mechanism is used in both passive (i.e. heat pipes) and active (i.e. refrigerating machines) cooling devices. However, the solid-liquid phase change process is another interesting possibility to reject even high heat loads, especially when they are intermittent. The term Phase Change Materials (PCMs) commonly refers to those materials, which use the solid-liquid phase change process to adsorb and then release heat loads [1]. The present work aims at investigating the new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of PCMs, the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in paraffin waxes with melting temperature ranging between 20 °C and 70 °C. The thermophysical properties were then measured to understand the effects of the nanoparticles (material, size, and amount) on the thermal properties of both the solid and liquid PCM. These new nano-PCMs can represent an interesting way to mitigate or eliminate the intrinsic limitations in the use of paraffin waxes as PCMs for both energy storage and passive cooling applications.
CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università di PadovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.03.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu233 citations 233 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università di PadovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.03.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Polish Academy of Sciences Chancellery Authors: L Belussi; L Danza; I Meroni; F Salamone;handle: 20.500.14243/272531
AbstractEnergy efficiency and reduction of building consumption are deeply felt issues both at Italian and international level. The recent regulatory framework sets stringent limits on energy performance of buildings. Awaiting the adoption of these principles, several methods have been developed to solve the problem of energy consumption of buildings, among which the simplified energy audit is intended to identify any anomalies in the building system, to provide helpful tips for energy refurbishments and to raise end users’ awareness. The Energy Signature is an operational tool of these methodologies, an evaluation method in which energy consumption is correlated with climatic variables, representing the actual energy behaviour of the building. In addition to that purpose, the Energy Signature can be used as an empirical tool to determine the real performances of the technical elements. The latter aspect is illustrated in this article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/oere-2015-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/oere-2015-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Polish Academy of Sciences Chancellery Authors: L Belussi; L Danza; I Meroni; F Salamone;handle: 20.500.14243/272531
AbstractEnergy efficiency and reduction of building consumption are deeply felt issues both at Italian and international level. The recent regulatory framework sets stringent limits on energy performance of buildings. Awaiting the adoption of these principles, several methods have been developed to solve the problem of energy consumption of buildings, among which the simplified energy audit is intended to identify any anomalies in the building system, to provide helpful tips for energy refurbishments and to raise end users’ awareness. The Energy Signature is an operational tool of these methodologies, an evaluation method in which energy consumption is correlated with climatic variables, representing the actual energy behaviour of the building. In addition to that purpose, the Energy Signature can be used as an empirical tool to determine the real performances of the technical elements. The latter aspect is illustrated in this article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/oere-2015-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/oere-2015-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:EDP Sciences Lorenzo Belussi; Ludovico Danza; Matteo Ghellere; Italo Meroni; Francesco Salamone; Arben Shtylla; Etleva Dobjani; Saimir Shtylla;handle: 20.500.14243/401514
Since its introduction in 2010, the nearly Zero Energy Building (nZEB) concept has known a large diffusion in European countries. Albania, an aspiring candidate country to join the European Union EU, is paving the way towards its introduction by transposing EU directives in the fields of energy efficiency into the national legislation. Most of the national building stock includes buildings with low thermal and energy performance but with high refurbishment potential, too. The country can become an important contributor in the EU decarbonization strategy due to the high percentage of electricity produced by hydropower stations, making it one of the least carbon-intensity countries in the electricity production point of view. The article focuses on the evaluation of the energy performance of an existing school located in Tirana and the potentialities to reach the nZEB target, analysing both the suitable technological solutions and the energy market situation. The Primary Energy Factors PEF for the local electricity market are estimated referring to statistical data and in comparison, with neighbouring countries, Italy and Greece, in order to investigate the potential of the achievement of the nZEB target in Albania.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131202005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131202005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:EDP Sciences Lorenzo Belussi; Ludovico Danza; Matteo Ghellere; Italo Meroni; Francesco Salamone; Arben Shtylla; Etleva Dobjani; Saimir Shtylla;handle: 20.500.14243/401514
Since its introduction in 2010, the nearly Zero Energy Building (nZEB) concept has known a large diffusion in European countries. Albania, an aspiring candidate country to join the European Union EU, is paving the way towards its introduction by transposing EU directives in the fields of energy efficiency into the national legislation. Most of the national building stock includes buildings with low thermal and energy performance but with high refurbishment potential, too. The country can become an important contributor in the EU decarbonization strategy due to the high percentage of electricity produced by hydropower stations, making it one of the least carbon-intensity countries in the electricity production point of view. The article focuses on the evaluation of the energy performance of an existing school located in Tirana and the potentialities to reach the nZEB target, analysing both the suitable technological solutions and the energy market situation. The Primary Energy Factors PEF for the local electricity market are estimated referring to statistical data and in comparison, with neighbouring countries, Italy and Greece, in order to investigate the potential of the achievement of the nZEB target in Albania.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131202005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131202005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:EDP Sciences Authors: Ludovico Danza; Lorenzo Belussi; Francesco Salamone;handle: 20.500.14243/400920
The quality of the indoor environment, in terms of thermal, lighting, air and acoustic quality, grouped in the Indoor Environmental Quality (IEQ) concept, plays a key role in occupants’ wellbeing and satisfaction. Only in recent years IEQ has been investigated as a whole. Today, IEQ occupies the same place of energy efficiency in the design of buildings, especially those with high performance level as the Zero-Energy Buildings (ZEB). The research deals with an experimental campaign during the cooling season carried out in a ZEB laboratory that involved 100 participants aimed at evaluating the IEQ and the indoor environments (e.g. thermal and air quality). The test consists in a survey, during which each participant is required to answer a questionnaire about how he feels the indoor environment. The experimental campaign was completed with a monitoring activity aimed at detecting the main environmental variables that can affect the participants’ answers. Collected data were treated with regression techniques to highlight possible relationships between them. The results show how in a building with high levels of energy performances the air quality plays a key role on occupants’ evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019704002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019704002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:EDP Sciences Authors: Ludovico Danza; Lorenzo Belussi; Francesco Salamone;handle: 20.500.14243/400920
The quality of the indoor environment, in terms of thermal, lighting, air and acoustic quality, grouped in the Indoor Environmental Quality (IEQ) concept, plays a key role in occupants’ wellbeing and satisfaction. Only in recent years IEQ has been investigated as a whole. Today, IEQ occupies the same place of energy efficiency in the design of buildings, especially those with high performance level as the Zero-Energy Buildings (ZEB). The research deals with an experimental campaign during the cooling season carried out in a ZEB laboratory that involved 100 participants aimed at evaluating the IEQ and the indoor environments (e.g. thermal and air quality). The test consists in a survey, during which each participant is required to answer a questionnaire about how he feels the indoor environment. The experimental campaign was completed with a monitoring activity aimed at detecting the main environmental variables that can affect the participants’ answers. Collected data were treated with regression techniques to highlight possible relationships between them. The results show how in a building with high levels of energy performances the air quality plays a key role on occupants’ evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019704002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019704002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Francesco Salamone; Lorenzo Belussi; Ludovico Danza; Francesco Guarino; Sonia Longo;doi: 10.3390/app131911091
handle: 20.500.14243/452964
The literature reports several examples wherein calculation methodologies for assessing the energy performance of buildings are proposed, and solutions to improve their performance are posited, along with the introduction of advanced technologies and algorithms to reach this goal [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app131911091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app131911091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Francesco Salamone; Lorenzo Belussi; Ludovico Danza; Francesco Guarino; Sonia Longo;doi: 10.3390/app131911091
handle: 20.500.14243/452964
The literature reports several examples wherein calculation methodologies for assessing the energy performance of buildings are proposed, and solutions to improve their performance are posited, along with the introduction of advanced technologies and algorithms to reach this goal [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app131911091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app131911091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 ItalyPublisher:International Information and Engineering Technology Association Lorenzo Belussi; Ludovico Danza; Italo Meroni; Francesco Salamone; Salvatore Minutoli; Carlo Romeo;handle: 20.500.14243/348749
Building sector is responsible for approximately 40% of energy consumption and 36% of CO2 emissions in the EU. For more than a decade the Energy Performance Certification (EPC) revealed to be an effective tool to create demand for energy efficiency in buildings providing recommendations for the cost-effective upgrading of the energy performance. The EPC process is founded on a standard calculation, based on conventional climate, use, surroundings and occupant-related input data, as defined by the Technical Standard EN 15603:2008. Even if the EPC is substantially mandatory in the European Countries, differences can be found along the process in particular in terms of methodology and tools. In Italy the national regulation provides simplified methodologies that can generate results assuring a maximum deviation between + 20% and - 5% of the final non-renewable primary energy compared to the same parameters determined with the application of the national reference tool. The aim of the present article is to describe the salient features of the methodology and the technical choices necessary to guarantee the range of acceptability of the results. A case study tested the procedure and the results were compared to those of an extended calculation procedure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/mmc_b.870302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/mmc_b.870302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 ItalyPublisher:International Information and Engineering Technology Association Lorenzo Belussi; Ludovico Danza; Italo Meroni; Francesco Salamone; Salvatore Minutoli; Carlo Romeo;handle: 20.500.14243/348749
Building sector is responsible for approximately 40% of energy consumption and 36% of CO2 emissions in the EU. For more than a decade the Energy Performance Certification (EPC) revealed to be an effective tool to create demand for energy efficiency in buildings providing recommendations for the cost-effective upgrading of the energy performance. The EPC process is founded on a standard calculation, based on conventional climate, use, surroundings and occupant-related input data, as defined by the Technical Standard EN 15603:2008. Even if the EPC is substantially mandatory in the European Countries, differences can be found along the process in particular in terms of methodology and tools. In Italy the national regulation provides simplified methodologies that can generate results assuring a maximum deviation between + 20% and - 5% of the final non-renewable primary energy compared to the same parameters determined with the application of the national reference tool. The aim of the present article is to describe the salient features of the methodology and the technical choices necessary to guarantee the range of acceptability of the results. A case study tested the procedure and the results were compared to those of an extended calculation procedure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/mmc_b.870302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/mmc_b.870302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG Ludovico Danza; Benedetta Barozzi; Lorenzo Belussi; Italo Meroni; Francesco Salamone;The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.
Buildings arrow_drop_down BuildingsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2075-5309/6/1/3/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings6010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2075-5309/6/1/3/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings6010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 ItalyPublisher:MDPI AG Ludovico Danza; Benedetta Barozzi; Lorenzo Belussi; Italo Meroni; Francesco Salamone;The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.
Buildings arrow_drop_down BuildingsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2075-5309/6/1/3/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings6010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/2075-5309/6/1/3/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings6010003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 ItalyPublisher:BIAS, Milano , Italia Authors: Ludovico Danza; Alberto Dabusti; Lorenzo Belussi; Francesco Salamone;handle: 20.500.14243/337917
The analysis of the energy performance of a building involves various activities characterized by specific objectives, methodological approaches and tools. Standard quasi-stationary and dynamic calculation methods achieve results gradually more adherent to reality. This article describes a simplified methodology based on a resistive-capacitive thermal network. The developed model enables to calculate the building energy use. The energy balance is solved on an hourly basis in order to predict optimization scenarios and determine the energy saving potential. L'analisi delle prestazioni energetiche di un edificio comporta diverse attività caratterizzate da specifici obiettivi, approcci metodologici e strumenti. I metodi quasi-stazionari e dinamici raggiungono risultati via via più aderenti alla realtà. L'articolo descrive una metodologia semplificata nata dall'esigenza di avere uno step temporale orario e prevedere scenari di ottimizzazione di gestione e risparmio energetico incentrata sull'analogia elettrica secondo uno schema resistivo-capacitivo.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::20b02af1754289ef7ab2b6c9202bc0e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::20b02af1754289ef7ab2b6c9202bc0e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 ItalyPublisher:BIAS, Milano , Italia Authors: Ludovico Danza; Alberto Dabusti; Lorenzo Belussi; Francesco Salamone;handle: 20.500.14243/337917
The analysis of the energy performance of a building involves various activities characterized by specific objectives, methodological approaches and tools. Standard quasi-stationary and dynamic calculation methods achieve results gradually more adherent to reality. This article describes a simplified methodology based on a resistive-capacitive thermal network. The developed model enables to calculate the building energy use. The energy balance is solved on an hourly basis in order to predict optimization scenarios and determine the energy saving potential. L'analisi delle prestazioni energetiche di un edificio comporta diverse attività caratterizzate da specifici obiettivi, approcci metodologici e strumenti. I metodi quasi-stazionari e dinamici raggiungono risultati via via più aderenti alla realtà. L'articolo descrive una metodologia semplificata nata dall'esigenza di avere uno step temporale orario e prevedere scenari di ottimizzazione di gestione e risparmio energetico incentrata sull'analogia elettrica secondo uno schema resistivo-capacitivo.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::20b02af1754289ef7ab2b6c9202bc0e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::20b02af1754289ef7ab2b6c9202bc0e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Danza L; Belussi L; Guazzi G; Meroni I; Salamone F;handle: 20.500.14243/342834
Abstract Durability is an important aspect that has not to be neglected in ZEB design. The requirements for buildings energy needs reduction and increase of renewable energy sources stimulated designers to integrate technologies in an efficient way. This ambitious goal must meet the capacity of the technical solutions to guarantee their performances over the years. The durability of materials and technologies is a topic that warrants further analyses in order to assess the proper efficiencies and the expected lifetime of a ZEB. Typically the energy balance of a ZEB is calculated by considering the annual energy flows or rarely the whole life cycle. The most used approaches consider constant performance of materials and technical elements over the lifespan. However, the performance loss of a single element can cause an imbalance in the behavior of a ZEB, for which persists a thin balance between inlet and outlet flows. The paper provides a critical point of view on this issue paying attention on the following technical solutions implemented in a case study for which the current scientific literature provides analysis on the degradation during their lifetime: glazing systems, VIPs, PV panels and GSHPs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Danza L; Belussi L; Guazzi G; Meroni I; Salamone F;handle: 20.500.14243/342834
Abstract Durability is an important aspect that has not to be neglected in ZEB design. The requirements for buildings energy needs reduction and increase of renewable energy sources stimulated designers to integrate technologies in an efficient way. This ambitious goal must meet the capacity of the technical solutions to guarantee their performances over the years. The durability of materials and technologies is a topic that warrants further analyses in order to assess the proper efficiencies and the expected lifetime of a ZEB. Typically the energy balance of a ZEB is calculated by considering the annual energy flows or rarely the whole life cycle. The most used approaches consider constant performance of materials and technical elements over the lifespan. However, the performance loss of a single element can cause an imbalance in the behavior of a ZEB, for which persists a thin balance between inlet and outlet flows. The paper provides a critical point of view on this issue paying attention on the following technical solutions implemented in a case study for which the current scientific literature provides analysis on the degradation during their lifetime: glazing systems, VIPs, PV panels and GSHPs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 ItalyPublisher:MDPI AG Francesco Salamone; Lorenzo Belussi; Ludovico Danza; Matteo Ghellere; Italo Meroni;The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/3/338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16030338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/3/338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16030338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 ItalyPublisher:MDPI AG Francesco Salamone; Lorenzo Belussi; Ludovico Danza; Matteo Ghellere; Italo Meroni;The article describes the design phase, development and practical application of a smart object integrated in a desk lamp and called “Smart Lamp”, useful to optimize the indoor thermal comfort and energy savings that are two important workplace issues where the comfort of the workers and the consumption of the building strongly affect the economic balance of a company. The Smart Lamp was built using a microcontroller, an integrated temperature and relative humidity sensor, some other modules and a 3D printer. This smart device is similar to the desk lamps that are usually found in offices but it allows one to adjust the indoor thermal comfort, by interacting directly with the air conditioner. After the construction phase, the Smart Lamp was installed in an office normally occupied by four workers to evaluate the indoor thermal comfort and the cooling consumption in summer. The results showed how the application of the Smart Lamp effectively reduced the energy consumption, optimizing the thermal comfort. The use of DIY approach combined with read-write functionality of websites, blog and social platforms, also allowed to customize, improve, share, reproduce and interconnect technologies so that anybody could use them in any occupied environment.
Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/3/338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16030338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1424-8220/16/3/338/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s16030338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Colla L; Fedele L; Mancin S; Danza L; Manca O;handle: 20.500.14243/296414 , 11577/3189386 , 11577/3222519 , 11591/358544
It is well known that the heat transfer associated with a phase change process is much higher than sensible enthalpy change even in forced convection. In particular, the vaporization process has been widely studied because it exploits the highest heat transfer coefficient; this heat transfer mechanism is used in both passive (i.e. heat pipes) and active (i.e. refrigerating machines) cooling devices. However, the solid-liquid phase change process is another interesting possibility to reject even high heat loads, especially when they are intermittent. The term Phase Change Materials (PCMs) commonly refers to those materials, which use the solid-liquid phase change process to adsorb and then release heat loads [1]. The present work aims at investigating the new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of PCMs, the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in paraffin waxes with melting temperature ranging between 20 °C and 70 °C. The thermophysical properties were then measured to understand the effects of the nanoparticles (material, size, and amount) on the thermal properties of both the solid and liquid PCM. These new nano-PCMs can represent an interesting way to mitigate or eliminate the intrinsic limitations in the use of paraffin waxes as PCMs for both energy storage and passive cooling applications.
CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università di PadovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.03.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu233 citations 233 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università di PadovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.03.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Colla L; Fedele L; Mancin S; Danza L; Manca O;handle: 20.500.14243/296414 , 11577/3189386 , 11577/3222519 , 11591/358544
It is well known that the heat transfer associated with a phase change process is much higher than sensible enthalpy change even in forced convection. In particular, the vaporization process has been widely studied because it exploits the highest heat transfer coefficient; this heat transfer mechanism is used in both passive (i.e. heat pipes) and active (i.e. refrigerating machines) cooling devices. However, the solid-liquid phase change process is another interesting possibility to reject even high heat loads, especially when they are intermittent. The term Phase Change Materials (PCMs) commonly refers to those materials, which use the solid-liquid phase change process to adsorb and then release heat loads [1]. The present work aims at investigating the new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of PCMs, the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in paraffin waxes with melting temperature ranging between 20 °C and 70 °C. The thermophysical properties were then measured to understand the effects of the nanoparticles (material, size, and amount) on the thermal properties of both the solid and liquid PCM. These new nano-PCMs can represent an interesting way to mitigate or eliminate the intrinsic limitations in the use of paraffin waxes as PCMs for both energy storage and passive cooling applications.
CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università di PadovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.03.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu233 citations 233 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Applied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio istituzionale della ricerca - Università di PadovaConference object . 2015add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2016.03.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Polish Academy of Sciences Chancellery Authors: L Belussi; L Danza; I Meroni; F Salamone;handle: 20.500.14243/272531
AbstractEnergy efficiency and reduction of building consumption are deeply felt issues both at Italian and international level. The recent regulatory framework sets stringent limits on energy performance of buildings. Awaiting the adoption of these principles, several methods have been developed to solve the problem of energy consumption of buildings, among which the simplified energy audit is intended to identify any anomalies in the building system, to provide helpful tips for energy refurbishments and to raise end users’ awareness. The Energy Signature is an operational tool of these methodologies, an evaluation method in which energy consumption is correlated with climatic variables, representing the actual energy behaviour of the building. In addition to that purpose, the Energy Signature can be used as an empirical tool to determine the real performances of the technical elements. The latter aspect is illustrated in this article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/oere-2015-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/oere-2015-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Polish Academy of Sciences Chancellery Authors: L Belussi; L Danza; I Meroni; F Salamone;handle: 20.500.14243/272531
AbstractEnergy efficiency and reduction of building consumption are deeply felt issues both at Italian and international level. The recent regulatory framework sets stringent limits on energy performance of buildings. Awaiting the adoption of these principles, several methods have been developed to solve the problem of energy consumption of buildings, among which the simplified energy audit is intended to identify any anomalies in the building system, to provide helpful tips for energy refurbishments and to raise end users’ awareness. The Energy Signature is an operational tool of these methodologies, an evaluation method in which energy consumption is correlated with climatic variables, representing the actual energy behaviour of the building. In addition to that purpose, the Energy Signature can be used as an empirical tool to determine the real performances of the technical elements. The latter aspect is illustrated in this article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/oere-2015-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/oere-2015-0008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:EDP Sciences Lorenzo Belussi; Ludovico Danza; Matteo Ghellere; Italo Meroni; Francesco Salamone; Arben Shtylla; Etleva Dobjani; Saimir Shtylla;handle: 20.500.14243/401514
Since its introduction in 2010, the nearly Zero Energy Building (nZEB) concept has known a large diffusion in European countries. Albania, an aspiring candidate country to join the European Union EU, is paving the way towards its introduction by transposing EU directives in the fields of energy efficiency into the national legislation. Most of the national building stock includes buildings with low thermal and energy performance but with high refurbishment potential, too. The country can become an important contributor in the EU decarbonization strategy due to the high percentage of electricity produced by hydropower stations, making it one of the least carbon-intensity countries in the electricity production point of view. The article focuses on the evaluation of the energy performance of an existing school located in Tirana and the potentialities to reach the nZEB target, analysing both the suitable technological solutions and the energy market situation. The Primary Energy Factors PEF for the local electricity market are estimated referring to statistical data and in comparison, with neighbouring countries, Italy and Greece, in order to investigate the potential of the achievement of the nZEB target in Albania.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131202005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131202005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:EDP Sciences Lorenzo Belussi; Ludovico Danza; Matteo Ghellere; Italo Meroni; Francesco Salamone; Arben Shtylla; Etleva Dobjani; Saimir Shtylla;handle: 20.500.14243/401514
Since its introduction in 2010, the nearly Zero Energy Building (nZEB) concept has known a large diffusion in European countries. Albania, an aspiring candidate country to join the European Union EU, is paving the way towards its introduction by transposing EU directives in the fields of energy efficiency into the national legislation. Most of the national building stock includes buildings with low thermal and energy performance but with high refurbishment potential, too. The country can become an important contributor in the EU decarbonization strategy due to the high percentage of electricity produced by hydropower stations, making it one of the least carbon-intensity countries in the electricity production point of view. The article focuses on the evaluation of the energy performance of an existing school located in Tirana and the potentialities to reach the nZEB target, analysing both the suitable technological solutions and the energy market situation. The Primary Energy Factors PEF for the local electricity market are estimated referring to statistical data and in comparison, with neighbouring countries, Italy and Greece, in order to investigate the potential of the achievement of the nZEB target in Albania.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131202005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202131202005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:EDP Sciences Authors: Ludovico Danza; Lorenzo Belussi; Francesco Salamone;handle: 20.500.14243/400920
The quality of the indoor environment, in terms of thermal, lighting, air and acoustic quality, grouped in the Indoor Environmental Quality (IEQ) concept, plays a key role in occupants’ wellbeing and satisfaction. Only in recent years IEQ has been investigated as a whole. Today, IEQ occupies the same place of energy efficiency in the design of buildings, especially those with high performance level as the Zero-Energy Buildings (ZEB). The research deals with an experimental campaign during the cooling season carried out in a ZEB laboratory that involved 100 participants aimed at evaluating the IEQ and the indoor environments (e.g. thermal and air quality). The test consists in a survey, during which each participant is required to answer a questionnaire about how he feels the indoor environment. The experimental campaign was completed with a monitoring activity aimed at detecting the main environmental variables that can affect the participants’ answers. Collected data were treated with regression techniques to highlight possible relationships between them. The results show how in a building with high levels of energy performances the air quality plays a key role on occupants’ evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019704002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019704002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:EDP Sciences Authors: Ludovico Danza; Lorenzo Belussi; Francesco Salamone;handle: 20.500.14243/400920
The quality of the indoor environment, in terms of thermal, lighting, air and acoustic quality, grouped in the Indoor Environmental Quality (IEQ) concept, plays a key role in occupants’ wellbeing and satisfaction. Only in recent years IEQ has been investigated as a whole. Today, IEQ occupies the same place of energy efficiency in the design of buildings, especially those with high performance level as the Zero-Energy Buildings (ZEB). The research deals with an experimental campaign during the cooling season carried out in a ZEB laboratory that involved 100 participants aimed at evaluating the IEQ and the indoor environments (e.g. thermal and air quality). The test consists in a survey, during which each participant is required to answer a questionnaire about how he feels the indoor environment. The experimental campaign was completed with a monitoring activity aimed at detecting the main environmental variables that can affect the participants’ answers. Collected data were treated with regression techniques to highlight possible relationships between them. The results show how in a building with high levels of energy performances the air quality plays a key role on occupants’ evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019704002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202019704002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Francesco Salamone; Lorenzo Belussi; Ludovico Danza; Francesco Guarino; Sonia Longo;doi: 10.3390/app131911091
handle: 20.500.14243/452964
The literature reports several examples wherein calculation methodologies for assessing the energy performance of buildings are proposed, and solutions to improve their performance are posited, along with the introduction of advanced technologies and algorithms to reach this goal [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app131911091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app131911091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Francesco Salamone; Lorenzo Belussi; Ludovico Danza; Francesco Guarino; Sonia Longo;doi: 10.3390/app131911091
handle: 20.500.14243/452964
The literature reports several examples wherein calculation methodologies for assessing the energy performance of buildings are proposed, and solutions to improve their performance are posited, along with the introduction of advanced technologies and algorithms to reach this goal [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app131911091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app131911091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 ItalyPublisher:International Information and Engineering Technology Association Lorenzo Belussi; Ludovico Danza; Italo Meroni; Francesco Salamone; Salvatore Minutoli; Carlo Romeo;handle: 20.500.14243/348749
Building sector is responsible for approximately 40% of energy consumption and 36% of CO2 emissions in the EU. For more than a decade the Energy Performance Certification (EPC) revealed to be an effective tool to create demand for energy efficiency in buildings providing recommendations for the cost-effective upgrading of the energy performance. The EPC process is founded on a standard calculation, based on conventional climate, use, surroundings and occupant-related input data, as defined by the Technical Standard EN 15603:2008. Even if the EPC is substantially mandatory in the European Countries, differences can be found along the process in particular in terms of methodology and tools. In Italy the national regulation provides simplified methodologies that can generate results assuring a maximum deviation between + 20% and - 5% of the final non-renewable primary energy compared to the same parameters determined with the application of the national reference tool. The aim of the present article is to describe the salient features of the methodology and the technical choices necessary to guarantee the range of acceptability of the results. A case study tested the procedure and the results were compared to those of an extended calculation procedure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/mmc_b.870302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/mmc_b.870302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 ItalyPublisher:International Information and Engineering Technology Association Lorenzo Belussi; Ludovico Danza; Italo Meroni; Francesco Salamone; Salvatore Minutoli; Carlo Romeo;handle: 20.500.14243/348749
Building sector is responsible for approximately 40% of energy consumption and 36% of CO2 emissions in the EU. For more than a decade the Energy Performance Certification (EPC) revealed to be an effective tool to create demand for energy efficiency in buildings providing recommendations for the cost-effective upgrading of the energy performance. The EPC process is founded on a standard calculation, based on conventional climate, use, surroundings and occupant-related input data, as defined by the Technical Standard EN 15603:2008. Even if the EPC is substantially mandatory in the European Countries, differences can be found along the process in particular in terms of methodology and tools. In Italy the national regulation provides simplified methodologies that can generate results assuring a maximum deviation between + 20% and - 5% of the final non-renewable primary energy compared to the same parameters determined with the application of the national reference tool. The aim of the present article is to describe the salient features of the methodology and the technical choices necessary to guarantee the range of acceptability of the results. A case study tested the procedure and the results were compared to those of an extended calculation procedure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/mmc_b.870302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18280/mmc_b.870302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu