- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Chemical Society (ACS) Authors: Angele Djioleu; Danielle Julie Carrier;The identification of biomass pretreatment-generated compounds that impede cellulose hydrolysis is critical for improving the overall biomass saccharification process. The aim of this study was to correlate the identification and concentrations of switchgrass dilute acid pretreatment-generated compounds to cellulolytic enzyme inhibition and to tie this back to processing parameters. Preparation of 24 dilute acid prehydrolyzates was performed with switchgrass at temperatures from 140 to 180 °C, processing times from 10 to 40 min, and sulfuric acid concentrations of 0.5% or 1% (v/v). Results showed that all the switchgrass prehydrolyzates significantly reduced cellulolytic enzyme activities when assayed against model substrates. Exoglucanase was the most sensitive with its activity reduction, ranging from 58% to 88%; the inhibitory effect on β-glucosidase and the cellulase cocktail ranged from 32% to 63% and 16% to 41%, respectively. Polyphenolic compounds were the most detrimental pretreatment-generated pr...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.7b03686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.7b03686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 CanadaPublisher:American Chemical Society (ACS) David T. Allen; D. Julie Carrier; Jinlong Gong; Bing-Joe Hwang; Peter Licence; Audrey Moores; Thalappil Pradeep; Bert Sels; Bala Subramaniam; Michael K. C. Tam; Lina Zhang; Rhea M. Williams;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.7b04700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.7b04700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: C. Clausen Edgar; R. Howard Luke; L.S. Vaughn Katherine; Carrier Danielle Julie; +1 AuthorsC. Clausen Edgar; R. Howard Luke; L.S. Vaughn Katherine; Carrier Danielle Julie; W. King Jerry;pmid: 18378137
Lycopene, a carotenoid linked to protection against certain forms of cancer, is found in produce such as papaya, red-fleshed tomatoes, grapefruit and watermelon. The preparation of a supercritical CO2 (SC-CO2) watermelon-lycopene extract could serve as a food grade source of this carotenoid. This study established preliminary conditions for enhancing SC-CO2 extraction of lycopene from watermelon. Freeze-dried watermelon was extracted with SC-CO2 and ethanol as an organic co-solvent. The lycopene concentration was determined by HPLC, with absorbance measured at 503 nm. In an initial set of experiments, the effects of extraction temperature (70-90 degrees C), pressure (20.7-41.4 MPa) and co-solvent ethanol addition (10-15%) were evaluated. A lycopene yield of 38 microg per gram of wet weight was obtained at 70 degrees C, 20.7 MPa, and 15% by volume ethanol. The extraction of fresh (non-freeze-dried) watermelon yielded 103+/-6 microg lycopene per gram fresh fruit weight. Of the parameters tested, temperature had the most effect on lycopene yield. Thus, in another set of experiments, the temperature was varied from 60-75 degrees C at an extraction pressure of 20.7 MPa in the presence of 15% ethanol. Studies showed that freeze-dried watermelon flesh loses lycopene in storage. In accounting for lycopene storage losses, lycopene yields at 60 degrees C extraction temperature were 14% greater than those obtained at 70 degrees C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Mohanram, Saritha; Rajan, Kalavathy; Carrier, Danielle Julie; Nain, Lata; Arora, Anju;Abstract Rice straw is the most abundant agricultural residue on a global scale and is widely available as feedstock for cellulosic fuel production. However, it is highly recalcitrant to biochemical deconstruction and also generates inhibitors that affect enzymatic saccharification. Rice straw from eastern Arkansas was subjected to dilute acid pretreatment (160 °C, 48 min and 1.0% sulfuric acid) and solid-state fermentation with two lignocellulolytic fungi, Trametes hirsuta and Myrothecium roridum, and their saccharification efficacies were compared. T. hirsuta and M. roridum were tested separately; pretreatment of rice straw with either strain for seven days resulted in 19 and 70% enrichment of its holocellulose content, respectively. However, liquid chromatography analysis of the alkali extracts showed significant differences in cell wall degradation by T. hirsuta and M. roridum. T. hirsuta removed 15% more phenolic compounds and 38% more glucan than M. roridum, while M. roridum removed 77% more xylan than T. hirsuta. Fungal and dilute acid pretreated biomass was then hydrolyzed using Accellerase® 1500, a saccharification cocktail. Saccharification efficiency of M. roridum was 37% higher than that of dilute acid pretreatment of rice straw, requiring 8% lower enzyme loading and 50% shorter enzymatic hydrolysis duration. Alkali extraction of fungal pretreated biomass also yielded 10–15 g kg−1 of acid precipitable polymeric lignin (APPL), which is a valuable co-product for biorefineries. In comparison to dilute acid pretreatment, fungal pretreatment could be a cost-effective alternative for the degradation of recalcitrant biomass, such as rice straw.
Biomass and Bioenerg... arrow_drop_down Biomass and BioenergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down Biomass and BioenergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Springer Science and Business Media LLC Justin K. Lovelady; Sunny N. Wallace; Edgar C. Clausen; Danielle Julie Carrier; Lijun Duan; Jerry W. King; Abigail S. Engelberth;pmid: 19277480
In an effort to increase revenues from a given feedstock, valuable co-products could be extracted prior to biochemical or thermochemical conversion with subcritical water. Although subcritical water shows significant promise in replacing organic solvents as an extraction solvent, compound degradation has been observed at elevated extraction temperatures. First order thermal degradation kinetics from a model system, silymarin extracted from Silybum marianum, in water at pH 5.1 and 100, 120, 140, and 160 degrees C were investigated. Water pressure was maintained slightly above its vapor pressure. Silymarin is a mixture of taxifolin, silichristin, silidianin, silibinin, and isosilibinin. The degradation rate constants ranged from 0.0104 min(-1) at 100 degrees C for silichristin to a maximum of 0.0840 min(-1) at 160 degrees C for silybin B. Half-lives, calculated from the rate constants, ranged from a low of 6.2 min at 160 degrees C to a high of 58.3 min at 100 degrees C, both for silichristin. The respective activation energies for the compounds ranged from 37.2 kJ/gmole for silidianin to 45.2 kJ/gmole for silichristin. In extracting the silymarin with pure ethanol at 140 degrees C, no degradation was observed. However, when extracting with ethanol/water mixtures at and 140 degrees C, degradation increased exponentially as the concentration of water increased.
Applied Biochemistry... arrow_drop_down Applied Biochemistry and BiotechnologyArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefApplied Biochemistry and BiotechnologyArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12010-009-8672-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Biochemistry... arrow_drop_down Applied Biochemistry and BiotechnologyArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefApplied Biochemistry and BiotechnologyArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12010-009-8672-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United Kingdom, CanadaPublisher:American Chemical Society (ACS) Funded by:EC | TUTIC-GREENEC| TUTIC-GREENDavid T. Allen; D. Julie Carrier; Jinlong Gong; Nicholas Gathergood; Hongxian Han; Bing-Joe Hwang; Peter Licence; Michael Meier; Audrey Moores; Thalappil Pradeep; Jieshan Qiu; Bert Sels; Bala Subramaniam; Michael K. C. Tam; Lina Zhang; Rhea M. Williams;Legacy description not available
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: https://doi.org/10.15223/policy-001Data sources: Crossrefhttp://dx.doi.org/10.1021/acss...Other literature typeData sources: European Union Open Data PortalUniversity of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b06549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: https://doi.org/10.15223/policy-001Data sources: Crossrefhttp://dx.doi.org/10.1021/acss...Other literature typeData sources: European Union Open Data PortalUniversity of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b06549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Kalavathy Rajan; Danielle Julie Carrier;Pretreatment is an essential process to break down recalcitrant biomass and dilute acid hydrolysis is one of the most efficient and cost effective pretreatment technologies available today. However there are potential disadvantages in using dilute acid as a pretreatment, such as the production of degradation products, which inhibits the ensuing processing chain and limits its adoption. In this work, wheat straw was pretreated under varying dilute acid conditions; the resulting degradation products were determined and the quality of sugar stream generated via enzymatic saccharification was monitored. The dilute acid pretreatment conditions were: temperatures of 140 and 160 °C, sulfuric acid concentrations of 5, 10 and 20 dm3 m−3 and reaction times of 10, 20, 30, 45 and 60 min. Pretreated wheat straw was washed with six dilutions of water and hydrolyzed with commercial cellulase enzymes for 24–48 h. Optimal conditions for pretreating wheat straw were determined as: 140 °C, 10 dm3 m−3 sulfuric acid concentration and a 30 min reaction time. At these conditions, the glucose yield from wheat straw was maximized at 89% of the theoretical maximum, while the concentrations of formic acid, furfural, acetic acid and 5-hydroxymethylfurfural were 32.37 ± 4.91, 12.08 ± 1.69, 7.98 ± 1.02 and 1.14 ± 0.22 g kg−1, respectively. Increases in pretreatment severity led to increases in inhibitor generation, as well as a 27% reduction in monosaccharide yield. Rinsing with deionized water was effective in removing inhibitors, such as 86% of furfural. The formation of inhibitors was thus observed to depend on dilute acid pretreatment conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2006Publisher:Humana Press Lijan Duan; David Bransby; Adam K. Ekenseair; Edgar C. Clausen; Danielle Julie Carrier;pmid: 16915655
Mimosa, an excellent energy crop candidate because of its high growth yield, also contains, on a dry basis, 0.83% hyperoside and 0.90% quercitrin. Hyperoside has been documented as having anti-inflammatory and diurectic properties, whereas quercitrin may play a role in intestinal repair following chronic mucosal injury. Thus, mimosa might first be extracted for important antioxidant compounds and then used as a feedstock for energy production. This article presents results from studies aimed at determining the effect of three extraction parameters (temperature, solvent composition, and time) on the yield of these important quercetin compounds. Conditions are sought which maximize yield and concentration, whereas complementing subsequent biomass pretreatment, hydrolysis and fermentation.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-1-...Part of book or chapter of book . 2007 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-1-59745-268-7_31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-1-...Part of book or chapter of book . 2007 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-1-59745-268-7_31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Canada, United KingdomPublisher:American Chemical Society (ACS) D. Julie Carrier; David T. Allen; Nicholas Gathergood; Hongxian Han; Peter Licence; Michael R. Meier; Audrey Moores; Thalappil Pradeep; Bert Sels; Bala Subramaniam; Michael K. C. Tam; Lina Zhang;N/A
ACS Sustainable Chem... arrow_drop_down University of Lincoln Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Lincoln Institutional RepositoryACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: https://doi.org/10.15223/policy-001Data sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c05173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down University of Lincoln Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Lincoln Institutional RepositoryACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: https://doi.org/10.15223/policy-001Data sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c05173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Canadian Science Publishing Authors: Sunny N. Wallace; Sunny N. Wallace; Shanmugam NagarajanS. Nagarajan; Shanmugam NagarajanS. Nagarajan; +10 AuthorsSunny N. Wallace; Sunny N. Wallace; Shanmugam NagarajanS. Nagarajan; Shanmugam NagarajanS. Nagarajan; Katherine Vaughn; Katherine Vaughn; Carl L. Griffis; Carl L. Griffis; Edgar C. Clausen; Edgar C. Clausen; Danielle Julie Carrier; Danielle Julie Carrier; Jennifer RaibleJ. Raible; Jennifer RaibleJ. Raible;doi: 10.1139/y07-058
pmid: 18066135
Silybum marianum contains flavonolignans, termed silymarin (SM), that are therapeutic agents for many inflammation-based diseases including atherosclerosis. Oxidation of human low-density lipoprotein was induced by CuSO4 or J774 macrophage cells and measured by the formation of thiobarbituric acid reactive substances (TBARS). SM was extracted by pressurized hot water (PHWE) or ethanol, and the effects of these extracts on TBARS formation were evaluated in comparison with those of SM preparations made from blending masses of individual flavonolignan standards in ratios identical to those of the water and ethanol extracts. Ethanol-extracted SM and its blended counterpart inhibited the generation of TBARS by 82% and 43%, respectively, at 150 μmol/L doses. TBARS levels in the presence of 150 μmol/L of the PHWE and its blended SM counterpart were reduced by 84% and 38%, respectively. Extracts from milk thistle fruit displayed higher protective effects than blended SM solutions of the same concentration with an identical compositional makeup. The appearance of degradation peaks in the water extract did not create any cytotoxic effects. Results of this study confirm that PHWE can be used to extract flavonolignans from milk thistle and that these extracts may possess therapeutic potential different from or beyond that of traditional organic solvent preparations.
Canadian Journal of ... arrow_drop_down Canadian Journal of Physiology and PharmacologyArticle . 2007 . Peer-reviewedLicense: CSP TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/y07-058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Canadian Journal of ... arrow_drop_down Canadian Journal of Physiology and PharmacologyArticle . 2007 . Peer-reviewedLicense: CSP TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/y07-058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Chemical Society (ACS) Authors: Angele Djioleu; Danielle Julie Carrier;The identification of biomass pretreatment-generated compounds that impede cellulose hydrolysis is critical for improving the overall biomass saccharification process. The aim of this study was to correlate the identification and concentrations of switchgrass dilute acid pretreatment-generated compounds to cellulolytic enzyme inhibition and to tie this back to processing parameters. Preparation of 24 dilute acid prehydrolyzates was performed with switchgrass at temperatures from 140 to 180 °C, processing times from 10 to 40 min, and sulfuric acid concentrations of 0.5% or 1% (v/v). Results showed that all the switchgrass prehydrolyzates significantly reduced cellulolytic enzyme activities when assayed against model substrates. Exoglucanase was the most sensitive with its activity reduction, ranging from 58% to 88%; the inhibitory effect on β-glucosidase and the cellulase cocktail ranged from 32% to 63% and 16% to 41%, respectively. Polyphenolic compounds were the most detrimental pretreatment-generated pr...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.7b03686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.7b03686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 CanadaPublisher:American Chemical Society (ACS) David T. Allen; D. Julie Carrier; Jinlong Gong; Bing-Joe Hwang; Peter Licence; Audrey Moores; Thalappil Pradeep; Bert Sels; Bala Subramaniam; Michael K. C. Tam; Lina Zhang; Rhea M. Williams;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.7b04700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.7b04700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: C. Clausen Edgar; R. Howard Luke; L.S. Vaughn Katherine; Carrier Danielle Julie; +1 AuthorsC. Clausen Edgar; R. Howard Luke; L.S. Vaughn Katherine; Carrier Danielle Julie; W. King Jerry;pmid: 18378137
Lycopene, a carotenoid linked to protection against certain forms of cancer, is found in produce such as papaya, red-fleshed tomatoes, grapefruit and watermelon. The preparation of a supercritical CO2 (SC-CO2) watermelon-lycopene extract could serve as a food grade source of this carotenoid. This study established preliminary conditions for enhancing SC-CO2 extraction of lycopene from watermelon. Freeze-dried watermelon was extracted with SC-CO2 and ethanol as an organic co-solvent. The lycopene concentration was determined by HPLC, with absorbance measured at 503 nm. In an initial set of experiments, the effects of extraction temperature (70-90 degrees C), pressure (20.7-41.4 MPa) and co-solvent ethanol addition (10-15%) were evaluated. A lycopene yield of 38 microg per gram of wet weight was obtained at 70 degrees C, 20.7 MPa, and 15% by volume ethanol. The extraction of fresh (non-freeze-dried) watermelon yielded 103+/-6 microg lycopene per gram fresh fruit weight. Of the parameters tested, temperature had the most effect on lycopene yield. Thus, in another set of experiments, the temperature was varied from 60-75 degrees C at an extraction pressure of 20.7 MPa in the presence of 15% ethanol. Studies showed that freeze-dried watermelon flesh loses lycopene in storage. In accounting for lycopene storage losses, lycopene yields at 60 degrees C extraction temperature were 14% greater than those obtained at 70 degrees C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2008.01.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Mohanram, Saritha; Rajan, Kalavathy; Carrier, Danielle Julie; Nain, Lata; Arora, Anju;Abstract Rice straw is the most abundant agricultural residue on a global scale and is widely available as feedstock for cellulosic fuel production. However, it is highly recalcitrant to biochemical deconstruction and also generates inhibitors that affect enzymatic saccharification. Rice straw from eastern Arkansas was subjected to dilute acid pretreatment (160 °C, 48 min and 1.0% sulfuric acid) and solid-state fermentation with two lignocellulolytic fungi, Trametes hirsuta and Myrothecium roridum, and their saccharification efficacies were compared. T. hirsuta and M. roridum were tested separately; pretreatment of rice straw with either strain for seven days resulted in 19 and 70% enrichment of its holocellulose content, respectively. However, liquid chromatography analysis of the alkali extracts showed significant differences in cell wall degradation by T. hirsuta and M. roridum. T. hirsuta removed 15% more phenolic compounds and 38% more glucan than M. roridum, while M. roridum removed 77% more xylan than T. hirsuta. Fungal and dilute acid pretreated biomass was then hydrolyzed using Accellerase® 1500, a saccharification cocktail. Saccharification efficiency of M. roridum was 37% higher than that of dilute acid pretreatment of rice straw, requiring 8% lower enzyme loading and 50% shorter enzymatic hydrolysis duration. Alkali extraction of fungal pretreated biomass also yielded 10–15 g kg−1 of acid precipitable polymeric lignin (APPL), which is a valuable co-product for biorefineries. In comparison to dilute acid pretreatment, fungal pretreatment could be a cost-effective alternative for the degradation of recalcitrant biomass, such as rice straw.
Biomass and Bioenerg... arrow_drop_down Biomass and BioenergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down Biomass and BioenergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Springer Science and Business Media LLC Justin K. Lovelady; Sunny N. Wallace; Edgar C. Clausen; Danielle Julie Carrier; Lijun Duan; Jerry W. King; Abigail S. Engelberth;pmid: 19277480
In an effort to increase revenues from a given feedstock, valuable co-products could be extracted prior to biochemical or thermochemical conversion with subcritical water. Although subcritical water shows significant promise in replacing organic solvents as an extraction solvent, compound degradation has been observed at elevated extraction temperatures. First order thermal degradation kinetics from a model system, silymarin extracted from Silybum marianum, in water at pH 5.1 and 100, 120, 140, and 160 degrees C were investigated. Water pressure was maintained slightly above its vapor pressure. Silymarin is a mixture of taxifolin, silichristin, silidianin, silibinin, and isosilibinin. The degradation rate constants ranged from 0.0104 min(-1) at 100 degrees C for silichristin to a maximum of 0.0840 min(-1) at 160 degrees C for silybin B. Half-lives, calculated from the rate constants, ranged from a low of 6.2 min at 160 degrees C to a high of 58.3 min at 100 degrees C, both for silichristin. The respective activation energies for the compounds ranged from 37.2 kJ/gmole for silidianin to 45.2 kJ/gmole for silichristin. In extracting the silymarin with pure ethanol at 140 degrees C, no degradation was observed. However, when extracting with ethanol/water mixtures at and 140 degrees C, degradation increased exponentially as the concentration of water increased.
Applied Biochemistry... arrow_drop_down Applied Biochemistry and BiotechnologyArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefApplied Biochemistry and BiotechnologyArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12010-009-8672-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Biochemistry... arrow_drop_down Applied Biochemistry and BiotechnologyArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefApplied Biochemistry and BiotechnologyArticle . 2009 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12010-009-8672-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United Kingdom, CanadaPublisher:American Chemical Society (ACS) Funded by:EC | TUTIC-GREENEC| TUTIC-GREENDavid T. Allen; D. Julie Carrier; Jinlong Gong; Nicholas Gathergood; Hongxian Han; Bing-Joe Hwang; Peter Licence; Michael Meier; Audrey Moores; Thalappil Pradeep; Jieshan Qiu; Bert Sels; Bala Subramaniam; Michael K. C. Tam; Lina Zhang; Rhea M. Williams;Legacy description not available
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: https://doi.org/10.15223/policy-001Data sources: Crossrefhttp://dx.doi.org/10.1021/acss...Other literature typeData sources: European Union Open Data PortalUniversity of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b06549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: https://doi.org/10.15223/policy-001Data sources: Crossrefhttp://dx.doi.org/10.1021/acss...Other literature typeData sources: European Union Open Data PortalUniversity of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.8b06549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Kalavathy Rajan; Danielle Julie Carrier;Pretreatment is an essential process to break down recalcitrant biomass and dilute acid hydrolysis is one of the most efficient and cost effective pretreatment technologies available today. However there are potential disadvantages in using dilute acid as a pretreatment, such as the production of degradation products, which inhibits the ensuing processing chain and limits its adoption. In this work, wheat straw was pretreated under varying dilute acid conditions; the resulting degradation products were determined and the quality of sugar stream generated via enzymatic saccharification was monitored. The dilute acid pretreatment conditions were: temperatures of 140 and 160 °C, sulfuric acid concentrations of 5, 10 and 20 dm3 m−3 and reaction times of 10, 20, 30, 45 and 60 min. Pretreated wheat straw was washed with six dilutions of water and hydrolyzed with commercial cellulase enzymes for 24–48 h. Optimal conditions for pretreating wheat straw were determined as: 140 °C, 10 dm3 m−3 sulfuric acid concentration and a 30 min reaction time. At these conditions, the glucose yield from wheat straw was maximized at 89% of the theoretical maximum, while the concentrations of formic acid, furfural, acetic acid and 5-hydroxymethylfurfural were 32.37 ± 4.91, 12.08 ± 1.69, 7.98 ± 1.02 and 1.14 ± 0.22 g kg−1, respectively. Increases in pretreatment severity led to increases in inhibitor generation, as well as a 27% reduction in monosaccharide yield. Rinsing with deionized water was effective in removing inhibitors, such as 86% of furfural. The formation of inhibitors was thus observed to depend on dilute acid pretreatment conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2006Publisher:Humana Press Lijan Duan; David Bransby; Adam K. Ekenseair; Edgar C. Clausen; Danielle Julie Carrier;pmid: 16915655
Mimosa, an excellent energy crop candidate because of its high growth yield, also contains, on a dry basis, 0.83% hyperoside and 0.90% quercitrin. Hyperoside has been documented as having anti-inflammatory and diurectic properties, whereas quercitrin may play a role in intestinal repair following chronic mucosal injury. Thus, mimosa might first be extracted for important antioxidant compounds and then used as a feedstock for energy production. This article presents results from studies aimed at determining the effect of three extraction parameters (temperature, solvent composition, and time) on the yield of these important quercetin compounds. Conditions are sought which maximize yield and concentration, whereas complementing subsequent biomass pretreatment, hydrolysis and fermentation.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-1-...Part of book or chapter of book . 2007 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-1-59745-268-7_31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-1-...Part of book or chapter of book . 2007 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-1-59745-268-7_31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Canada, United KingdomPublisher:American Chemical Society (ACS) D. Julie Carrier; David T. Allen; Nicholas Gathergood; Hongxian Han; Peter Licence; Michael R. Meier; Audrey Moores; Thalappil Pradeep; Bert Sels; Bala Subramaniam; Michael K. C. Tam; Lina Zhang;N/A
ACS Sustainable Chem... arrow_drop_down University of Lincoln Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Lincoln Institutional RepositoryACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: https://doi.org/10.15223/policy-001Data sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c05173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down University of Lincoln Institutional RepositoryArticle . 2020 . Peer-reviewedData sources: University of Lincoln Institutional RepositoryACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: https://doi.org/10.15223/policy-001Data sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c05173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Canadian Science Publishing Authors: Sunny N. Wallace; Sunny N. Wallace; Shanmugam NagarajanS. Nagarajan; Shanmugam NagarajanS. Nagarajan; +10 AuthorsSunny N. Wallace; Sunny N. Wallace; Shanmugam NagarajanS. Nagarajan; Shanmugam NagarajanS. Nagarajan; Katherine Vaughn; Katherine Vaughn; Carl L. Griffis; Carl L. Griffis; Edgar C. Clausen; Edgar C. Clausen; Danielle Julie Carrier; Danielle Julie Carrier; Jennifer RaibleJ. Raible; Jennifer RaibleJ. Raible;doi: 10.1139/y07-058
pmid: 18066135
Silybum marianum contains flavonolignans, termed silymarin (SM), that are therapeutic agents for many inflammation-based diseases including atherosclerosis. Oxidation of human low-density lipoprotein was induced by CuSO4 or J774 macrophage cells and measured by the formation of thiobarbituric acid reactive substances (TBARS). SM was extracted by pressurized hot water (PHWE) or ethanol, and the effects of these extracts on TBARS formation were evaluated in comparison with those of SM preparations made from blending masses of individual flavonolignan standards in ratios identical to those of the water and ethanol extracts. Ethanol-extracted SM and its blended counterpart inhibited the generation of TBARS by 82% and 43%, respectively, at 150 μmol/L doses. TBARS levels in the presence of 150 μmol/L of the PHWE and its blended SM counterpart were reduced by 84% and 38%, respectively. Extracts from milk thistle fruit displayed higher protective effects than blended SM solutions of the same concentration with an identical compositional makeup. The appearance of degradation peaks in the water extract did not create any cytotoxic effects. Results of this study confirm that PHWE can be used to extract flavonolignans from milk thistle and that these extracts may possess therapeutic potential different from or beyond that of traditional organic solvent preparations.
Canadian Journal of ... arrow_drop_down Canadian Journal of Physiology and PharmacologyArticle . 2007 . Peer-reviewedLicense: CSP TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/y07-058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Canadian Journal of ... arrow_drop_down Canadian Journal of Physiology and PharmacologyArticle . 2007 . Peer-reviewedLicense: CSP TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/y07-058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu