Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: FEDERICI, MASSIMO; NISTICO', ROBERT GIOVANNI; Giustizieri, M; BERNARDI, GIORGIO; +1 Authors

    AbstractIt is largely accepted that an activation of the dopaminergic system underlies the recreational and convivial effects of ethanol. However, the mechanisms of action of this drug on the dopaminergic neurons are not fully understood yet. In the present study, we have used intracellular electrophysiological techniques (current and single‐electrode voltage‐clamp) to investigate the actions of ethanol on the γ‐aminobutyric acid (GABA)B‐mediated inhibitory postsynaptic potentials (IPSPs) in rat midbrain dopaminergic neurons. Ethanol (10–200 mm) augmented, in a concentration‐dependent and reversible manner, the amplitude of the GABAB–IPSP. In addition, the GABABagonist baclofen generated G‐protein‐gated inward rectifying K+channels (GIRK)‐related membrane hyperpolarizations/outward currents that were potentiated by ethanol. The potentiating effect of ethanol persisted in tetrodotoxin (TTX)‐treated neurons, suggesting a postsynaptic site of action. These effects of ethanol were not changed by manipulating adenyl cyclase, protein kinases and phospholipase C activity, or by chelating intracellular Ca2+with EGTA. Interestingly, the outward current caused by the intracytoplasmatic diffusion of the irreversible G‐protein activator GTPγS was transiently enhanced by ethanol. Our observations suggest that the action of ethanol occurs on activated GIRK channels downstream of the GABABreceptors. These enhancing effects of ethanol on GABAB‐induced synaptic responses could modulate alcohol intake and the altered mental and motor performance of individuals in an acute intoxicative phase.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Neuroscience
    Article . 2009 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: GRAZIANI, Manuela; NENCINI, Paolo; NISTICO', ROBERT GIOVANNI;

    Gender-related differences in the pharmacological effects of addictive drug are an emerging issue. This review examines gender differences in both pharmacokinetic and pharmacodynamic aspects of alcohol and cocaine intake since they cause complex pharmacological interactions, not least the formation of the active metabolite cocaethylene.The MEDLINE database was searched from 1990 to 2014 in order to find articles related to gender differences in alcohol, cocaine and cocaethylene pharmacokinetics and pharmacodynamics.Besides the well known gender differences in alcohol pharmacokinetics, women appear more susceptible to alcohol-mediated brain damage and seem to suffer more than men the acute effects of alcohol on hepatic and gonadal hormones. No significant gender differences have been found in the pharmacokinetics of cocaine taken alone; yet, in women pharmacological sensitivity to the drug seems to vary in relation to menstrual cycle; moreover, progesterone attenuates subjective effects of cocaine in women. Higher ratings at a subjective measure of mental/physical well-being have been observed in women when given cocaine and alcohol, alone or in combination. Finally, among subjects dependent on both alcohol and cocaine, men only benefit from naltrexone, whereas women used more cocaine during the trial and were less compliant to therapy than men.The observed subtle gender differences in the pharmacokinetics and pharmacodynamics of both alcohol and cocaine may have no subtle influence on the natural history of the co-abuse of the two drugs by women.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Pharmacological Research
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: FEDERICI, MASSIMO; NISTICO', ROBERT GIOVANNI; Giustizieri, M; BERNARDI, GIORGIO; +1 Authors

    AbstractIt is largely accepted that an activation of the dopaminergic system underlies the recreational and convivial effects of ethanol. However, the mechanisms of action of this drug on the dopaminergic neurons are not fully understood yet. In the present study, we have used intracellular electrophysiological techniques (current and single‐electrode voltage‐clamp) to investigate the actions of ethanol on the γ‐aminobutyric acid (GABA)B‐mediated inhibitory postsynaptic potentials (IPSPs) in rat midbrain dopaminergic neurons. Ethanol (10–200 mm) augmented, in a concentration‐dependent and reversible manner, the amplitude of the GABAB–IPSP. In addition, the GABABagonist baclofen generated G‐protein‐gated inward rectifying K+channels (GIRK)‐related membrane hyperpolarizations/outward currents that were potentiated by ethanol. The potentiating effect of ethanol persisted in tetrodotoxin (TTX)‐treated neurons, suggesting a postsynaptic site of action. These effects of ethanol were not changed by manipulating adenyl cyclase, protein kinases and phospholipase C activity, or by chelating intracellular Ca2+with EGTA. Interestingly, the outward current caused by the intracytoplasmatic diffusion of the irreversible G‐protein activator GTPγS was transiently enhanced by ethanol. Our observations suggest that the action of ethanol occurs on activated GIRK channels downstream of the GABABreceptors. These enhancing effects of ethanol on GABAB‐induced synaptic responses could modulate alcohol intake and the altered mental and motor performance of individuals in an acute intoxicative phase.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Neuroscience
    Article . 2009 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: GRAZIANI, Manuela; NENCINI, Paolo; NISTICO', ROBERT GIOVANNI;

    Gender-related differences in the pharmacological effects of addictive drug are an emerging issue. This review examines gender differences in both pharmacokinetic and pharmacodynamic aspects of alcohol and cocaine intake since they cause complex pharmacological interactions, not least the formation of the active metabolite cocaethylene.The MEDLINE database was searched from 1990 to 2014 in order to find articles related to gender differences in alcohol, cocaine and cocaethylene pharmacokinetics and pharmacodynamics.Besides the well known gender differences in alcohol pharmacokinetics, women appear more susceptible to alcohol-mediated brain damage and seem to suffer more than men the acute effects of alcohol on hepatic and gonadal hormones. No significant gender differences have been found in the pharmacokinetics of cocaine taken alone; yet, in women pharmacological sensitivity to the drug seems to vary in relation to menstrual cycle; moreover, progesterone attenuates subjective effects of cocaine in women. Higher ratings at a subjective measure of mental/physical well-being have been observed in women when given cocaine and alcohol, alone or in combination. Finally, among subjects dependent on both alcohol and cocaine, men only benefit from naltrexone, whereas women used more cocaine during the trial and were less compliant to therapy than men.The observed subtle gender differences in the pharmacokinetics and pharmacodynamics of both alcohol and cocaine may have no subtle influence on the natural history of the co-abuse of the two drugs by women.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Pharmacological Research
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph