Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Chaplow, J.S.; +1 Authors

    Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. Data collected during field and laboratory experiments to investigate the long-term effects of biochar application to soil on greenhouse gas emissions in a bioenergy plantation (Miscanthus X. giganteus). Analysis included monitoring of greenhouse gas emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)), soil physical (bulk density and soil moisture ) and soil chemical analyses (total carbon (C) and nitrogen (N), extractable ammonium and nitrate). Biochar was applied to plots in a bioenergy plantation and emissions of CO2, CH4 and N2O were measured over a two-year period. In addition a laboratory incubation experiment was conducted on soil taken from the Miscanthus field amended with field-incubated biochar to assess the effect on greenhouse gas emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Stott, A.W.; +2 Authors

    Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. These data are from an investigation of the effects of biochar application to soil, on soil greenhouse gas emissions and N transformations within the soil. Biochar is a carbon rich substance which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions. The data were collected during a 15N pool dilution incubation to investigate the nitrogen transformations within biochar-amended soil following the addition of 15N-labelled ammonium nitrate. Analyses included 15N content of nitrous oxide and 15N content of soil. The N transformations were then modelled using a model for calculating nitrogen fluxes in soil using 15N tracing (FLUAZ model).

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Chaplow, J.S.; +1 Authors

    Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. Data from an investigation of the effects of biochar application to soil on greenhouse gas emissions using soil from a bioenergy crop (Miscanthus X. giganteus). Data include physical (bulk density) and chemical analyses of the soil (total carbon (C) and nitrogen (N), extractable ammonium and nitrate), and greenhouse gas (GHG) emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) during incubations. Data were collected during two incubation experiments investigating the effects of temperature, soil moisture and soil aeration on biochar induced suppression of GHG emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • Authors: Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Chaplow, J.S.; +1 Authors

    Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. Data collected during field and laboratory experiments to investigate the long-term effects of biochar application to soil on greenhouse gas emissions in a bioenergy plantation (Miscanthus X. giganteus). Analysis included monitoring of greenhouse gas emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)), soil physical (bulk density and soil moisture ) and soil chemical analyses (total carbon (C) and nitrogen (N), extractable ammonium and nitrate). Biochar was applied to plots in a bioenergy plantation and emissions of CO2, CH4 and N2O were measured over a two-year period. In addition a laboratory incubation experiment was conducted on soil taken from the Miscanthus field amended with field-incubated biochar to assess the effect on greenhouse gas emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Stott, A.W.; +2 Authors

    Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. These data are from an investigation of the effects of biochar application to soil, on soil greenhouse gas emissions and N transformations within the soil. Biochar is a carbon rich substance which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions. The data were collected during a 15N pool dilution incubation to investigate the nitrogen transformations within biochar-amended soil following the addition of 15N-labelled ammonium nitrate. Analyses included 15N content of nitrous oxide and 15N content of soil. The N transformations were then modelled using a model for calculating nitrogen fluxes in soil using 15N tracing (FLUAZ model).

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Chaplow, J.S.; +1 Authors

    Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. Data from an investigation of the effects of biochar application to soil on greenhouse gas emissions using soil from a bioenergy crop (Miscanthus X. giganteus). Data include physical (bulk density) and chemical analyses of the soil (total carbon (C) and nitrogen (N), extractable ammonium and nitrate), and greenhouse gas (GHG) emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) during incubations. Data were collected during two incubation experiments investigating the effects of temperature, soil moisture and soil aeration on biochar induced suppression of GHG emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph