- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Edgar Castillo; Arnold R. Romero-Bohórquez; Vladimir Plata; Paola Gauthier-Maradei; +1 AuthorsEdgar Castillo; Arnold R. Romero-Bohórquez; Vladimir Plata; Paola Gauthier-Maradei; Viatcheslav Kafarov;Abstract Palm oil biodiesel (POB) is characterized by a very high precipitate content. Precipitate has caused potential customers to view POB unfavorably, thereby putting the suitability of this biofuel at risk. Therefore, precipitates isolated from POB were characterized in this study. The precipitates were fractionated by column chromatography, and then characterized using thin layer chromatography, FTIR, GC-FID, differential scanning calorimetry, and thermogravimetric analysis. Characterization revealed the preponderant presence of monopalmitin and free steryl glucosides (FSG) in the precipitates. FTIR suggested the presence of acylated steryl glucosides and fatty acid soaps, and thermal analysis revealed the presence of trace contaminants that may have coeluted with the monopalmitin and FSG during fractionation. All these findings should result in the development of techniques to prevent precipitate formation not only focused on the removal of FSG from POB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Edgar Castillo; Arnold R. Romero-Bohórquez; Vladimir Plata; Paola Gauthier-Maradei; +1 AuthorsEdgar Castillo; Arnold R. Romero-Bohórquez; Vladimir Plata; Paola Gauthier-Maradei; Viatcheslav Kafarov;Abstract Palm oil biodiesel (POB) is characterized by a very high precipitate content. Precipitate has caused potential customers to view POB unfavorably, thereby putting the suitability of this biofuel at risk. Therefore, precipitates isolated from POB were characterized in this study. The precipitates were fractionated by column chromatography, and then characterized using thin layer chromatography, FTIR, GC-FID, differential scanning calorimetry, and thermogravimetric analysis. Characterization revealed the preponderant presence of monopalmitin and free steryl glucosides (FSG) in the precipitates. FTIR suggested the presence of acylated steryl glucosides and fatty acid soaps, and thermal analysis revealed the presence of trace contaminants that may have coeluted with the monopalmitin and FSG during fractionation. All these findings should result in the development of techniques to prevent precipitate formation not only focused on the removal of FSG from POB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Gustavo Maya; Aurora L. Carreño Otero; Fabián L. Monares Bueno; Arnold R. Romero Bohórquez; +3 AuthorsGustavo Maya; Aurora L. Carreño Otero; Fabián L. Monares Bueno; Arnold R. Romero Bohórquez; Farid B. Cortés; Camilo A. Franco; Eduardo Manrique;doi: 10.3390/en16042043
Recent research has highlighted wettability alteration as the main consequence of the different mechanisms involved in technologies such as adjusted brine composition water flooding (ABCW) and low-salinity water flooding (LSW). However, studies are still needed to give a phenomenological explanation, and the most influential components of the system (rock–oil–brine) must be clarified. This work focuses on determining the most relevant variables for the smart water effects to occur. Static (contact angles) and dynamic tests (coreflooding) were conducted. For the static tests, aged Berea slices, a specific crude oil (27° API, 10.5 cp at 60 °C), and mono and divalent inorganic salts (Na+, K+, Ca2+, and Mg2+/Cl−) were used in 3 different concentrations of 1000, 3000, and 5000 ppm (ionic strength variation between 0.015 and 0.06) to establish the wettability state by measuring the contact angles of the system. When salts containing chloride were evaluated, a decrease in oil wettability was observed at 5000 ppm. At 3000 and 1000 ppm, tendencies depended on the particular cation. Three brines were selected from the contact angle experiments to be used in coreflooding assays, considering a particular design to identify ion exchange from the rock–oil–brine system. The first assay was carried out in the absence of crude oil as a baseline to determine the ion exchange between the brine and the rock, and a second test considered crude oil to provide insight into ion exchange and its effect on displacement efficiency. Capillary electrophoresis was used in this research as a novel contribution to the systematic study of oil displacement tests, and it has proven to be a powerful tool for understanding the mechanisms involved. The results show that the variations in the concentrations detected in the displacement effluents were the product of the interactions between rock, oil, and brine since the concentrations measured in the absence of oil phase were comparable to those in the injection brine. Significant variations in the effluent ion concentrations were determined for the different brines used, and increases in the pressure differentials were observed for the KCl and CaCl2 brines. These results suggest that the oil–brine ion exchange (salting in/out) represents a relevant mechanism to explain the observed displacement efficiencies and differential pressures. The ionic enrichment of the water phase due to the salting in/out effect needs to be better understood.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/2043/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/2043/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Gustavo Maya; Aurora L. Carreño Otero; Fabián L. Monares Bueno; Arnold R. Romero Bohórquez; +3 AuthorsGustavo Maya; Aurora L. Carreño Otero; Fabián L. Monares Bueno; Arnold R. Romero Bohórquez; Farid B. Cortés; Camilo A. Franco; Eduardo Manrique;doi: 10.3390/en16042043
Recent research has highlighted wettability alteration as the main consequence of the different mechanisms involved in technologies such as adjusted brine composition water flooding (ABCW) and low-salinity water flooding (LSW). However, studies are still needed to give a phenomenological explanation, and the most influential components of the system (rock–oil–brine) must be clarified. This work focuses on determining the most relevant variables for the smart water effects to occur. Static (contact angles) and dynamic tests (coreflooding) were conducted. For the static tests, aged Berea slices, a specific crude oil (27° API, 10.5 cp at 60 °C), and mono and divalent inorganic salts (Na+, K+, Ca2+, and Mg2+/Cl−) were used in 3 different concentrations of 1000, 3000, and 5000 ppm (ionic strength variation between 0.015 and 0.06) to establish the wettability state by measuring the contact angles of the system. When salts containing chloride were evaluated, a decrease in oil wettability was observed at 5000 ppm. At 3000 and 1000 ppm, tendencies depended on the particular cation. Three brines were selected from the contact angle experiments to be used in coreflooding assays, considering a particular design to identify ion exchange from the rock–oil–brine system. The first assay was carried out in the absence of crude oil as a baseline to determine the ion exchange between the brine and the rock, and a second test considered crude oil to provide insight into ion exchange and its effect on displacement efficiency. Capillary electrophoresis was used in this research as a novel contribution to the systematic study of oil displacement tests, and it has proven to be a powerful tool for understanding the mechanisms involved. The results show that the variations in the concentrations detected in the displacement effluents were the product of the interactions between rock, oil, and brine since the concentrations measured in the absence of oil phase were comparable to those in the injection brine. Significant variations in the effluent ion concentrations were determined for the different brines used, and increases in the pressure differentials were observed for the KCl and CaCl2 brines. These results suggest that the oil–brine ion exchange (salting in/out) represents a relevant mechanism to explain the observed displacement efficiencies and differential pressures. The ionic enrichment of the water phase due to the salting in/out effect needs to be better understood.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/2043/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/2043/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Edgar Castillo; Arnold R. Romero-Bohórquez; Vladimir Plata; Paola Gauthier-Maradei; +1 AuthorsEdgar Castillo; Arnold R. Romero-Bohórquez; Vladimir Plata; Paola Gauthier-Maradei; Viatcheslav Kafarov;Abstract Palm oil biodiesel (POB) is characterized by a very high precipitate content. Precipitate has caused potential customers to view POB unfavorably, thereby putting the suitability of this biofuel at risk. Therefore, precipitates isolated from POB were characterized in this study. The precipitates were fractionated by column chromatography, and then characterized using thin layer chromatography, FTIR, GC-FID, differential scanning calorimetry, and thermogravimetric analysis. Characterization revealed the preponderant presence of monopalmitin and free steryl glucosides (FSG) in the precipitates. FTIR suggested the presence of acylated steryl glucosides and fatty acid soaps, and thermal analysis revealed the presence of trace contaminants that may have coeluted with the monopalmitin and FSG during fractionation. All these findings should result in the development of techniques to prevent precipitate formation not only focused on the removal of FSG from POB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Edgar Castillo; Arnold R. Romero-Bohórquez; Vladimir Plata; Paola Gauthier-Maradei; +1 AuthorsEdgar Castillo; Arnold R. Romero-Bohórquez; Vladimir Plata; Paola Gauthier-Maradei; Viatcheslav Kafarov;Abstract Palm oil biodiesel (POB) is characterized by a very high precipitate content. Precipitate has caused potential customers to view POB unfavorably, thereby putting the suitability of this biofuel at risk. Therefore, precipitates isolated from POB were characterized in this study. The precipitates were fractionated by column chromatography, and then characterized using thin layer chromatography, FTIR, GC-FID, differential scanning calorimetry, and thermogravimetric analysis. Characterization revealed the preponderant presence of monopalmitin and free steryl glucosides (FSG) in the precipitates. FTIR suggested the presence of acylated steryl glucosides and fatty acid soaps, and thermal analysis revealed the presence of trace contaminants that may have coeluted with the monopalmitin and FSG during fractionation. All these findings should result in the development of techniques to prevent precipitate formation not only focused on the removal of FSG from POB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.12.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Gustavo Maya; Aurora L. Carreño Otero; Fabián L. Monares Bueno; Arnold R. Romero Bohórquez; +3 AuthorsGustavo Maya; Aurora L. Carreño Otero; Fabián L. Monares Bueno; Arnold R. Romero Bohórquez; Farid B. Cortés; Camilo A. Franco; Eduardo Manrique;doi: 10.3390/en16042043
Recent research has highlighted wettability alteration as the main consequence of the different mechanisms involved in technologies such as adjusted brine composition water flooding (ABCW) and low-salinity water flooding (LSW). However, studies are still needed to give a phenomenological explanation, and the most influential components of the system (rock–oil–brine) must be clarified. This work focuses on determining the most relevant variables for the smart water effects to occur. Static (contact angles) and dynamic tests (coreflooding) were conducted. For the static tests, aged Berea slices, a specific crude oil (27° API, 10.5 cp at 60 °C), and mono and divalent inorganic salts (Na+, K+, Ca2+, and Mg2+/Cl−) were used in 3 different concentrations of 1000, 3000, and 5000 ppm (ionic strength variation between 0.015 and 0.06) to establish the wettability state by measuring the contact angles of the system. When salts containing chloride were evaluated, a decrease in oil wettability was observed at 5000 ppm. At 3000 and 1000 ppm, tendencies depended on the particular cation. Three brines were selected from the contact angle experiments to be used in coreflooding assays, considering a particular design to identify ion exchange from the rock–oil–brine system. The first assay was carried out in the absence of crude oil as a baseline to determine the ion exchange between the brine and the rock, and a second test considered crude oil to provide insight into ion exchange and its effect on displacement efficiency. Capillary electrophoresis was used in this research as a novel contribution to the systematic study of oil displacement tests, and it has proven to be a powerful tool for understanding the mechanisms involved. The results show that the variations in the concentrations detected in the displacement effluents were the product of the interactions between rock, oil, and brine since the concentrations measured in the absence of oil phase were comparable to those in the injection brine. Significant variations in the effluent ion concentrations were determined for the different brines used, and increases in the pressure differentials were observed for the KCl and CaCl2 brines. These results suggest that the oil–brine ion exchange (salting in/out) represents a relevant mechanism to explain the observed displacement efficiencies and differential pressures. The ionic enrichment of the water phase due to the salting in/out effect needs to be better understood.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/2043/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/2043/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Gustavo Maya; Aurora L. Carreño Otero; Fabián L. Monares Bueno; Arnold R. Romero Bohórquez; +3 AuthorsGustavo Maya; Aurora L. Carreño Otero; Fabián L. Monares Bueno; Arnold R. Romero Bohórquez; Farid B. Cortés; Camilo A. Franco; Eduardo Manrique;doi: 10.3390/en16042043
Recent research has highlighted wettability alteration as the main consequence of the different mechanisms involved in technologies such as adjusted brine composition water flooding (ABCW) and low-salinity water flooding (LSW). However, studies are still needed to give a phenomenological explanation, and the most influential components of the system (rock–oil–brine) must be clarified. This work focuses on determining the most relevant variables for the smart water effects to occur. Static (contact angles) and dynamic tests (coreflooding) were conducted. For the static tests, aged Berea slices, a specific crude oil (27° API, 10.5 cp at 60 °C), and mono and divalent inorganic salts (Na+, K+, Ca2+, and Mg2+/Cl−) were used in 3 different concentrations of 1000, 3000, and 5000 ppm (ionic strength variation between 0.015 and 0.06) to establish the wettability state by measuring the contact angles of the system. When salts containing chloride were evaluated, a decrease in oil wettability was observed at 5000 ppm. At 3000 and 1000 ppm, tendencies depended on the particular cation. Three brines were selected from the contact angle experiments to be used in coreflooding assays, considering a particular design to identify ion exchange from the rock–oil–brine system. The first assay was carried out in the absence of crude oil as a baseline to determine the ion exchange between the brine and the rock, and a second test considered crude oil to provide insight into ion exchange and its effect on displacement efficiency. Capillary electrophoresis was used in this research as a novel contribution to the systematic study of oil displacement tests, and it has proven to be a powerful tool for understanding the mechanisms involved. The results show that the variations in the concentrations detected in the displacement effluents were the product of the interactions between rock, oil, and brine since the concentrations measured in the absence of oil phase were comparable to those in the injection brine. Significant variations in the effluent ion concentrations were determined for the different brines used, and increases in the pressure differentials were observed for the KCl and CaCl2 brines. These results suggest that the oil–brine ion exchange (salting in/out) represents a relevant mechanism to explain the observed displacement efficiencies and differential pressures. The ionic enrichment of the water phase due to the salting in/out effect needs to be better understood.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/2043/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/4/2043/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu