- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Yaxuan Xu; Jianuo Liu; Zhongqi Cui; Ziying Liu; Chenxu Dai; Xiangzhen Zang; Zhanlin Ji;doi: 10.3390/info15040225
With the continuous increase in global energy demand and growing environmental awareness, the utilization of renewable energy has become a worldwide consensus. In order to address the challenges posed by the intermittent and unpredictable nature of renewable energy in distributed power distribution networks, as well as to improve the economic and operational stability of distribution systems, this paper proposes the establishment of an active distribution network capable of accommodating renewable energy. The objective is to enhance the efficiency of new energy utilization. This study investigates optimal scheduling models for energy storage technologies and economic-operation dispatching techniques in distributed power distribution networks. Additionally, it develops a comprehensive demand response model, with real-time pricing and incentive policies aiming to minimize load peak–valley differentials. The control mechanism incorporates time-of-use pricing and integrates a chaos particle swarm algorithm for a holistic approach to solution finding. By coordinating and optimizing the control of distributed power sources, energy storage systems, and flexible loads, the active distribution network achieves minimal operational costs while meeting demand-side power requirements, striving to smooth out load curves as much as possible. Case studies demonstrate significant enhancements during off-peak periods, with an approximately 60% increase in the load power overall elevation of load factors during regular periods, as well as a reduction in grid loads during evening peak hours, with a maximum decrease of nearly 65 kW. This approach mitigates grid operational pressures and user expense, effectively enhancing the stability and economic efficiency in distribution network operations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/info15040225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/info15040225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 IrelandPublisher:MDPI AG Yaxuan Xu; Jihao Han; Zi Yin; Qingyang Liu; Chenxu Dai; Zhanlin Ji;To address the challenges associated with wind power integration, this paper analyzes the impact of distributed renewable energy on the voltage of the distribution network. Taking into account the fast control of photovoltaic inverters and the unique characteristics of photovoltaic arrays, we establish an active distribution network voltage reactive power-optimization model for planning the active distribution network. The model involves solving the original non-convex and non-linear power-flow-optimization problem. By introducing the second-order cone relaxation algorithm, we transform the model into a second-order cone programming model, making it easier to solve and yielding good results. The optimized parameters are then applied to the IEEE 33-node distribution system, where the phase angle of the node voltage is adjusted to optimize the reactive power of the entire power system, thereby demonstrating the effectiveness of utilizing a second-order cone programming algorithm for reactive power optimization in a comprehensive manner. Subsequently, active distribution network power quality control is implemented, resulting in a reduction in network loss from 0.41 MW to 0.02 MW. This reduces power loss rates, increases utilization efficiency by approximately 94%, optimizes power quality management, and ensures that users receive high-quality electrical energy.
Computers arrow_drop_down University of Limerick Research RepositoryArticle . 2024License: CC BY NC SAData sources: University of Limerick Research Repositoryhttps://dx.doi.org/10.34961/re...Other literature type . 2024License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2024License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers13040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Computers arrow_drop_down University of Limerick Research RepositoryArticle . 2024License: CC BY NC SAData sources: University of Limerick Research Repositoryhttps://dx.doi.org/10.34961/re...Other literature type . 2024License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2024License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers13040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Yaxuan Xu; Jianuo Liu; Zhongqi Cui; Ziying Liu; Chenxu Dai; Xiangzhen Zang; Zhanlin Ji;doi: 10.3390/info15040225
With the continuous increase in global energy demand and growing environmental awareness, the utilization of renewable energy has become a worldwide consensus. In order to address the challenges posed by the intermittent and unpredictable nature of renewable energy in distributed power distribution networks, as well as to improve the economic and operational stability of distribution systems, this paper proposes the establishment of an active distribution network capable of accommodating renewable energy. The objective is to enhance the efficiency of new energy utilization. This study investigates optimal scheduling models for energy storage technologies and economic-operation dispatching techniques in distributed power distribution networks. Additionally, it develops a comprehensive demand response model, with real-time pricing and incentive policies aiming to minimize load peak–valley differentials. The control mechanism incorporates time-of-use pricing and integrates a chaos particle swarm algorithm for a holistic approach to solution finding. By coordinating and optimizing the control of distributed power sources, energy storage systems, and flexible loads, the active distribution network achieves minimal operational costs while meeting demand-side power requirements, striving to smooth out load curves as much as possible. Case studies demonstrate significant enhancements during off-peak periods, with an approximately 60% increase in the load power overall elevation of load factors during regular periods, as well as a reduction in grid loads during evening peak hours, with a maximum decrease of nearly 65 kW. This approach mitigates grid operational pressures and user expense, effectively enhancing the stability and economic efficiency in distribution network operations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/info15040225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/info15040225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 IrelandPublisher:MDPI AG Yaxuan Xu; Jihao Han; Zi Yin; Qingyang Liu; Chenxu Dai; Zhanlin Ji;To address the challenges associated with wind power integration, this paper analyzes the impact of distributed renewable energy on the voltage of the distribution network. Taking into account the fast control of photovoltaic inverters and the unique characteristics of photovoltaic arrays, we establish an active distribution network voltage reactive power-optimization model for planning the active distribution network. The model involves solving the original non-convex and non-linear power-flow-optimization problem. By introducing the second-order cone relaxation algorithm, we transform the model into a second-order cone programming model, making it easier to solve and yielding good results. The optimized parameters are then applied to the IEEE 33-node distribution system, where the phase angle of the node voltage is adjusted to optimize the reactive power of the entire power system, thereby demonstrating the effectiveness of utilizing a second-order cone programming algorithm for reactive power optimization in a comprehensive manner. Subsequently, active distribution network power quality control is implemented, resulting in a reduction in network loss from 0.41 MW to 0.02 MW. This reduces power loss rates, increases utilization efficiency by approximately 94%, optimizes power quality management, and ensures that users receive high-quality electrical energy.
Computers arrow_drop_down University of Limerick Research RepositoryArticle . 2024License: CC BY NC SAData sources: University of Limerick Research Repositoryhttps://dx.doi.org/10.34961/re...Other literature type . 2024License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2024License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers13040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Computers arrow_drop_down University of Limerick Research RepositoryArticle . 2024License: CC BY NC SAData sources: University of Limerick Research Repositoryhttps://dx.doi.org/10.34961/re...Other literature type . 2024License: CC BY NC SAData sources: Datacitehttps://dx.doi.org/10.34961/re...Other literature type . 2024License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers13040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu