- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Jan DeWaters; Susan Powers; Felicity Bilow;doi: 10.3390/su13179693
Engineering graduates must be prepared to support our world’s need for a clean and sustainable energy future. Complex problems related to energy and sustainability require engineers to consider the broad spectrum of interrelated consequences including human and environmental health, sociopolitical, and economic factors. Teaching engineering students about energy within a societal context, simultaneous with developing technical knowledge and skills, will better prepare them to solve real-world problems. Yet few energy courses that approach energy topics from a human-centered perspective exist within engineering programs. Engineering students enrolled in energy programs often take such courses as supplemental to their course of study. This paper presents an engineering course that approaches energy education from a socio-technical perspective, emphasizing the complex interactions of energy technologies with sustainability dimensions. Course content and learning activities are structured around learning outcomes that require students to gain technical knowledge as well as an understanding of broader energy-related impacts. The course attracts students from a variety of majors and grade levels. A mixed quantitative/qualitative assessment conducted from 2019–2021 indicates successful achievement of course learning outcomes. Students demonstrated significant gains in technical content knowledge as well as the ability to critically address complex sociotechnical issues related to current and future energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Susan E. Powers; Jan E. DeWaters; Suresh Dhaniyala;doi: 10.3390/su13179684
Engineers must take a leading role in addressing the challenges of mitigating climate change and adapting to the inevitable changes that our world is facing. To improve climate literacy, technical education must include problem formulation and solutions that consider complex interactions between engineered, Earth, and societal systems, including trade-offs among benefits, costs, and risks. Improving engineering students’ climate literacy must also inspire students’ motivation to work toward climate solutions. This paper highlights the content and pedagogical approach used in a class for engineering students that helped contribute to significant gains in engineering students’ climate literacy and critical thinking competencies. A total of 89 students fully participated in a pre/post climate literacy questionnaire over four years of study. As a whole, students demonstrated significant gains in climate-related content knowledge, affect, and behavior. Substantial differences were observed between students in different engineering disciplines and male vs. female students. Assessment of critical thinking showed that students did an excellent job formulating problem statements and solutions in a manner that incorporated a multidimensional systems perspective. These skills are critical for students to address climate change effectively in their eventual professions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9684/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9684/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Claudia Bustamante; Stephen Bird; Lisa Legault; Susan E. Powers;doi: 10.3390/su15054171
We use circuit-level granular electricity measurements from student housing and statistical analysis to better understand individuals’ electricity consumption. Two key patterns emerged—individuals varied systematically in their magnitude of electricity use as well as in their variability of usage at the hourly and daily level. A cluster analysis of electricity consumption in individual bedrooms shows that 18% of students consume 48% of total electricity use at a median of 2.17 kWh/d/person. These few energy hogs have a disproportionate impact on electricity consumption. In contrast, the misers (22% of students) consume only 4% of the electricity (0.18 kWh/d/person). Mini-refrigerators in bedrooms contributed substantially to the total electricity use of the moderate users. In contrast, mini-refrigerators were less influential for energy hogs, suggesting that these residents may draw power in others ways, such as by using powerful computing or gaming systems for hours each day. A sub-cluster analysis revealed substantial individual variability in hourly usage profiles. Some energy hogs use electricity consistently throughout the day, while others have specific periods of high consumption. We demonstrate how our analysis is generalizable to other situations where the resident does not directly pay their utility bills and thus has limited financial incentive to conserve, and how it contributes to a deeper understanding of the different ways in which individuals use energy. This allows for targeting interventions to groups with similar patterns of consumption. For example, policies such as fines or fees that might reduce the excessive electricity use for short times or for individual hogs could result in potential savings ranging from 16–33% of bedroom electricity.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/5/4171/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/5/4171/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Jan DeWaters; Susan Powers; Felicity Bilow;doi: 10.3390/su13179693
Engineering graduates must be prepared to support our world’s need for a clean and sustainable energy future. Complex problems related to energy and sustainability require engineers to consider the broad spectrum of interrelated consequences including human and environmental health, sociopolitical, and economic factors. Teaching engineering students about energy within a societal context, simultaneous with developing technical knowledge and skills, will better prepare them to solve real-world problems. Yet few energy courses that approach energy topics from a human-centered perspective exist within engineering programs. Engineering students enrolled in energy programs often take such courses as supplemental to their course of study. This paper presents an engineering course that approaches energy education from a socio-technical perspective, emphasizing the complex interactions of energy technologies with sustainability dimensions. Course content and learning activities are structured around learning outcomes that require students to gain technical knowledge as well as an understanding of broader energy-related impacts. The course attracts students from a variety of majors and grade levels. A mixed quantitative/qualitative assessment conducted from 2019–2021 indicates successful achievement of course learning outcomes. Students demonstrated significant gains in technical content knowledge as well as the ability to critically address complex sociotechnical issues related to current and future energy systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Susan E. Powers; Jan E. DeWaters; Suresh Dhaniyala;doi: 10.3390/su13179684
Engineers must take a leading role in addressing the challenges of mitigating climate change and adapting to the inevitable changes that our world is facing. To improve climate literacy, technical education must include problem formulation and solutions that consider complex interactions between engineered, Earth, and societal systems, including trade-offs among benefits, costs, and risks. Improving engineering students’ climate literacy must also inspire students’ motivation to work toward climate solutions. This paper highlights the content and pedagogical approach used in a class for engineering students that helped contribute to significant gains in engineering students’ climate literacy and critical thinking competencies. A total of 89 students fully participated in a pre/post climate literacy questionnaire over four years of study. As a whole, students demonstrated significant gains in climate-related content knowledge, affect, and behavior. Substantial differences were observed between students in different engineering disciplines and male vs. female students. Assessment of critical thinking showed that students did an excellent job formulating problem statements and solutions in a manner that incorporated a multidimensional systems perspective. These skills are critical for students to address climate change effectively in their eventual professions.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9684/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/17/9684/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13179684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Claudia Bustamante; Stephen Bird; Lisa Legault; Susan E. Powers;doi: 10.3390/su15054171
We use circuit-level granular electricity measurements from student housing and statistical analysis to better understand individuals’ electricity consumption. Two key patterns emerged—individuals varied systematically in their magnitude of electricity use as well as in their variability of usage at the hourly and daily level. A cluster analysis of electricity consumption in individual bedrooms shows that 18% of students consume 48% of total electricity use at a median of 2.17 kWh/d/person. These few energy hogs have a disproportionate impact on electricity consumption. In contrast, the misers (22% of students) consume only 4% of the electricity (0.18 kWh/d/person). Mini-refrigerators in bedrooms contributed substantially to the total electricity use of the moderate users. In contrast, mini-refrigerators were less influential for energy hogs, suggesting that these residents may draw power in others ways, such as by using powerful computing or gaming systems for hours each day. A sub-cluster analysis revealed substantial individual variability in hourly usage profiles. Some energy hogs use electricity consistently throughout the day, while others have specific periods of high consumption. We demonstrate how our analysis is generalizable to other situations where the resident does not directly pay their utility bills and thus has limited financial incentive to conserve, and how it contributes to a deeper understanding of the different ways in which individuals use energy. This allows for targeting interventions to groups with similar patterns of consumption. For example, policies such as fines or fees that might reduce the excessive electricity use for short times or for individual hogs could result in potential savings ranging from 16–33% of bedroom electricity.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/5/4171/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/5/4171/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15054171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu