- home
- Advanced Search
- Energy Research
- Sustainability
- Energy Research
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Embargo end date: 02 Dec 2019 Switzerland, ItalyPublisher:MDPI AG Authors: Amir Hajiesmaeili; Francesco Pittau; Emmanuel Denarié; Guillaume Habert;handle: 11311/1150831
(PE)-UHPFRC, a novel strain hardening ultra high-performance fiber reinforced concrete (UHPFRC) with low clinker content, using Ultra-High Molecular Weight Polyethylene (UHMW-PE) fibers, was developed for structural applications of rehabilitation. A comprehensive life cycle assessment (LCA) was carried out to study the environmental impact of interventions on an existing bridge using PE-UHPFRC compared with conventional UHPFRC and post-tensioned reinforced concrete methods in three categories of global warming potential (GWP), cumulative energy demand (CED), and ecological scarcity (UBP). The results showed 55% and 29% decreases in the environmental impact of the PE-UHPFRC compared with reinforced concrete and conventional UHPFRC methods, respectively, which highlighted the effectiveness of this material for the rehabilitation/strengthening of structures from the viewpoint of environmental impact.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/24/6923/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11246923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/24/6923/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11246923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Feb 2022 Italy, Switzerland, FrancePublisher:MDPI AG Carcassi, Olga Beatrice; Minotti, Pietro; Habert, Guillaume; Paoletti, Ingrid; Claude, Sophie; Pittau, Francesco;handle: 11311/1197679
This research explores the carbon removal of a novel bio-insulation composite, here called MycoBamboo, based on the combination of bamboo particles and mycelium as binder. First, an attributional life cycle assessment (LCA) was performed to define the carbon footprint of a European bamboo plantation and a bio-insulation composite, as well as its ability to remove CO2 along its lifecycle at a laboratory scale. Secondly, the Global Worming Potential (GWP) was estimated through a dynamic LCA with selected end-of-life and technical replacement scenarios. Finally, a building wall application was analyzed to measure the carbon saving potential of the MycoBamboo when compared with alternative insulation materials applied as an exterior thermal insulation composite system. The results demonstrate that despite the negative GWP values of the biogenic CO2, the final Net-GWP was positive. The technical replacement scenarios had an influence on the final Net-GWP values, and a longer storage period is preferred to more frequent insulation substitution. The type of energy source and the deactivation phase play important roles in the mitigation of climate change. Therefore, to make the MycoBamboo competitive as an insulation system at the industrial scale, it is fundamental to identify alternative low-energy deactivation modes and shift all energy-intensity activities during the production phase to renewable energy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1384/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1384/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:MDPI AG Anita Naneva; Marcella Bonanomi; Alexander Hollberg; Guillaume Habert; Daniel Hall;The building sector has a significant potential to reduce the material resource demand needed for construction and therefore, greenhouse gas (GHG) emissions. Digitalization can help to make use of this potential and improve sustainability throughout the entire building’s life cycle. One way to address this potential is through the integration of Life Cycle Assessment (LCA) into the building process by employing Building Information Modeling (BIM). BIM can reduce the effort needed to carry out an LCA, and therefore, facilitate the integration into the building process. A review of current industry practice and scientific literature shows that companies are lacking the incentive to apply LCA. If applied, there are two main approaches. Either the LCA is performed in a simplified way at the beginning of the building process using imprecise techniques, or it is done at the very end when all the needed information is available, but it is too late for decision-making. One reason for this is the lack of methods, workflows and tools to implement BIM-LCA integration over the whole building development. Therefore, the main objective of this study is to develop an integrated BIM-LCA method for the entire building process by relating it to an established workflow. To avoid an additional effort for practitioners, an existing structure for cost estimation in the Swiss context is used. The established method is implemented in a tool and used in a case study in Switzerland to test the approach. The results of this study show that LCA can be performed continuously in each building phase over the entire building process using existing Building Information Modeling (BIM) techniques for cost estimation. The main benefit of this approach is that it simplifies the application of LCA in the building process and therefore gives incentives for companies to apply it. Moreover, the re-work caused by the need for re-entering data and the usage of many different software tools that characterize most of the current LCA practices is minimized. Furthermore, decision-making, both at the element and building levels, is supported.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/9/3748/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12093748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/9/3748/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12093748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:MDPI AG Authors: Christina Kiamili; Alexander Hollberg; Guillaume Habert;The global shift towards embodied carbon reduction in the building sector has indicated the need for a detailed analysis of environmental impacts across the whole lifecycle of buildings. The environmental impact of heating, ventilation, and air conditioning (HVAC) systems has rarely been studied in detail. Most of the published studies are based on assumptions and rule of thumb techniques. In this study, the requirements and methods to perform a detailed life cycle assessment (LCA) for HVAC systems based on building information modelling (BIM) are assessed and framed for the first time. The approach of linking external product data information to objects using visual programming language (VPL) is tested, and its benefits over the existing workflows are presented. The detailed BIM model of a newly built office building in Switzerland is used as a case study. In addition, detailed project documentation is used to ensure the plausibility of the calculated impact. The LCA results show that the embodied impact of the HVAC systems is three times higher than the targets provided by the Swiss Energy Efficiency Path (SIA 2040). Furthermore, it is shown that the embodied impact of HVAC systems lies in the range of 15–36% of the total embodied impact of office buildings. Nevertheless, further research and similar case studies are needed to provide a robust picture of the embodied environmental impact of HVAC systems. The results could contribute to setting stricter targets in line with the vision of decarbonization of the building sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Dec 2023 SwitzerlandPublisher:MDPI AG Junjie Li; Xijun Wu; Sharon K. W. Chow; Qiushi Zhuang; Guillaume Habert;Low temperatures and high humidity often occur in the northern basins and mountainous regions of China. This research reveals a common winter indoor environment in this rural areas characterized by low-temperature and high-humidity indoor thermal conditions. Improving this environment directly with equipment would inevitably result in significant energy consumption. Therefore, comprehending the thermal performance mechanisms of different structural building materials is of vital importance as it provides crucial baseline values for environmental improvement. This study conducted a survey utilizing user questionnaires, resulting in the collection of 214 valid responses. Additionally, a local experiment regarding thermal comfort was conducted. Simultaneously, this study monitored the indoor physical environments of these houses (a sample of 10 rooms was taken from earth houses and 12 rooms from brick houses). Parameters measured on site included air temperature, relative humidity, light illumination, and CO2. The results showed that the humidity inside the earth houses is more stable and regression models can be developed between thermal sensations and temperature for long-term residents. The residents of these earth houses are more sensitive to temperature step. In contrast, the residents of brick houses, experiencing greater environmental variability, demonstrated lower sensitivity and greater adaptability to temperature changes. In addition, heating from bottom to top is more comfortable and healthier for the residents of brick houses in Gansu. Moreover, it is more favorable for the inhabitants’ livelihood to regulate the temperature steps to a maximum of 4 °C. This study provides valuable reference information for the future design of houses in low-temperature and high-humidity environments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152316428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152316428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021Embargo end date: 27 Nov 2021 SwitzerlandPublisher:MDPI AG Rafaela Tirado; Adélaïde Aublet; Sylvain Laurenceau; Mathieu Thorel; Mathilde Louërat; Guillaume Habert;Building demolition is one of the main sources of waste generation in urban areas and is a growing problem for cities due to the generated environmental impacts. To promote high levels of circular economy, it is necessary to better understand the waste-flow composition; nevertheless, material flow studies typically focus on low levels of detail. This article presents a model based on a bottom-up macro-component approach, which allows the multiscale characterization of construction materials and the estimation of demolition waste flows, a model that we call the BTP-flux model. Data mining, analytical techniques, and geographic information system (GIS) tools were used to assess different datasets available at the national level and develop a common database for French buildings: BDNB. Generic information for buildings in the BDNB is then enriched by coupling every building with a catalog of macro-components (TyPy), thus allowing the building’s physical description. Subsequently, stock and demolition flows are calculated by aggregation and classified into 32 waste categories. The BTP-flux model was applied in Île-de-France in a sample of 101,320 buildings for residential and non-residential uses, representative of the assessed population (1,968,242 buildings). In the case of Île-de-France, the building stock and the total demolition flows were estimated at 1382 Mt and 4065 kt, respectively. For its inter-regional areas—departments—, stock and demolition waste can vary between 85 and 138 tons/cap and 0.263 and 0.486 tons/cap/year, respectively. The mean of the total demolition wastes was estimated at 0.33 tons/cap/year for the region. Results could encourage scientists, planners, and stakeholders to develop pathways towards a circular economy in the construction sector by implementing strategies for better management of waste recovery and reintegrating in economic circuits, while preserving a maximum of their added value.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 02 Aug 2024 SwitzerlandPublisher:MDPI AG Authors: Marin Pellan; Denise Almeida; Mathilde Louërat; Guillaume Habert;Climate policies such as sectoral carbon budgets use national greenhouse gas emissions inventories to track the decarbonization of sectors. While they provide an important compass to guide climate action, the accounting framework in which they are embedded lacks flexibility for activities that are international and at the crossroads of different sectors. The building activities, being largely linked with important upstream emitters such as energy production or industrial activities, which can take place outside of national borders, are such an example. As legislation increasingly addresses the whole-life carbon emissions of buildings, it is vital to develop cross-sectoral accounting methods that effectively measure and monitor the overall impact of buildings. Such methods are essential for creating sound and holistic decarbonization pathways that align with sustainability policies. This article aims to provide a consistent approach for depicting the life-cycle emissions of buildings at the national level, using France as a case study. By integrating the different emission scopes with decarbonization pathways, this approach also enables the creation of comprehensive whole-life carbon budgets. The results show that the French building stock footprint reached 162 MtCO2eq in 2019, with 64% attributed to operational emissions, primarily from fossil fuel combustion, and the remainder to embodied emissions, mainly from upstream industrial and energy sectors. Overall, 20% of the emissions occurred outside the national borders. Under various global decarbonization pathways, the significance of embodied emissions is projected to increase, potentially comprising 78% of the life-cycle emissions by 2050 under the current policies. This underscores the necessity for climate policies to address emissions beyond territorial and operational boundaries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16166762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16166762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2018 SwitzerlandPublisher:MDPI AG Authors: Edwin Zea Escamilla; Guillaume Habert; Juan Francisco Correal Daza; Hector F. Archilla; +2 AuthorsEdwin Zea Escamilla; Guillaume Habert; Juan Francisco Correal Daza; Hector F. Archilla; Juan Sebastian Echeverry Fernández; David Trujillo;The past five decades have witnessed an unprecedented growth in population. This has led to an ever-growing housing demand. It has been proposed that the use of bio-based materials, and specifically bamboo, can help alleviate the housing demand in a sustainable manner. The present paper aims to assess the environmental impact caused by using four different construction materials (bamboo, brick, concrete hollow block, and engineered bamboo) in buildings. A comparative life cycle assessment (LCA) was carried out to measure the environmental impact of the different construction materials in the construction of single and multi-storey buildings. The LCA considered the extraction, production, transport, and use of the construction materials. The IPCC2013 evaluation method from the Intergovernmental Panel on Climate Change IPCC2013 was used for the calculations of CO2 emissions. The assessment was geographically located in Colombia, South America, and estimates the transport distances of the construction materials. The results show that transportation and reinforcing materials significantly contribute to the environmental impact, whereas the engineered bamboo construction system has the lowest environmental impact. The adoption of bamboo-based construction systems has a significant potential to support the regenerative development of regions where they could be used and might lead to long-lasting improvements to economies, environments, and livelihoods.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/9/3096/pdfData sources: Multidisciplinary Digital Publishing InstituteZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/9/3096/pdfData sources: Multidisciplinary Digital Publishing InstituteZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 17 Jun 2022 SwitzerlandPublisher:MDPI AG Authors: Eleni Eleftheriou; Luis Felipe Lopez Muñoz; Guillaume Habert; Edwin Zea Escamilla;The provision of sustainable housing solutions is one of the main challenges in emerging economy countries. Furthermore, it is clear that a sustainable solution should be based on renewable bio-based materials. Scientific and practical evidence clearly suggests that the use of bamboo in the provision of housing solutions provides communities with both environmental and socio-economic benefits via this strategy. One barrier to the promotion of this type of solution is the lack of knowledge on structural design and environmental performance. Moreover, access to assessment tools and methodologies is limited. The use of simplified Life Cycle Assessment (LCA) has exhibited great potential to increase accessibility, but the generation of life cycle inventory data remains a major issue. In this paper, we describe the development of a methodological approach to use parametric design to generate the data required to carry out simplified LCA of social housing solutions. Moreover, we present a case study assessing a housing unit using cement bamboo frame technology developed by the Base Bahay Foundation in the Philippines. The main parameters for the LCA of the buildings were identified through sensitivity analysis. Moreover, they show that parametric design is a valid approach to overcome the challenges of data generation at early stages of design. The proposed approach would enable users without civil and/or engineering background to carry out simplified LCA calculations. Thus, through methodological approaches, it is possible to reduce significantly the complexity associated with LCA and open new avenues for it application.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/12/7409/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/12/7409/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Embargo end date: 03 Nov 2021 Finland, SwitzerlandPublisher:MDPI AG Funded by:AKA | Steps towards the use of ..., EC | SULTANAKA| Steps towards the use of mine tailings in geopolymer materials: reactivity, CO2 sequestration and heavy metal stabilization ,EC| SULTANNatalia Pires Martins; Sumit Srivastava; Francisco Veiga Simão; He Niu; Priyadharshini Perumal; Ruben Snellings; Mirja Illikainen; Hilde Chambart; Guillaume Habert;Medium and highly sulfidic tailings are high-volume wastes that can lead to severe environmental damage if not properly managed. Due to the high content of sulfide minerals, these tailings can undergo weathering if put in contact with oxygen and water, generating acid mine drainage (AMD). The moderate-to-high sulfide content is also an important technical limitation for their implementation in the production of construction materials. This paper reviews the use of sulfidic tailings as raw material in construction products, with a focus on cement, concrete, and ceramics. When used as aggregates in concrete, this can lead to concrete degradation by internal sulfate attack. In building ceramics, their implementation without prior treatment is undesirable due to the formation of black reduction core, efflorescence, SOx emissions, and their associated costs. Moreover, their intrinsic low reactivity represents a barrier for their use as supplementary cementitious materials (SCMs) and as precursors for alkali-activated materials (AAMs). Nevertheless, the production of calcium sulfoaluminate (CSA) cement can be a suitable path for the valorization of medium and highly sulfidic tailings. Otherwise difficult to upcycle, sulfidic tailings could be used in the clinker raw meal as an alternative raw material. Not only the SO3 and SiO2-rich bulk material is incorporated into reactive clinker phases, but also some minor constituents in the tailings may contribute to the production of such low-CO2 cements at lower temperatures. Nevertheless, this valorization route remains poorly explored and demands further research.
Sustainability arrow_drop_down University of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - JultikaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132112150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down University of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - JultikaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132112150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Embargo end date: 02 Dec 2019 Switzerland, ItalyPublisher:MDPI AG Authors: Amir Hajiesmaeili; Francesco Pittau; Emmanuel Denarié; Guillaume Habert;handle: 11311/1150831
(PE)-UHPFRC, a novel strain hardening ultra high-performance fiber reinforced concrete (UHPFRC) with low clinker content, using Ultra-High Molecular Weight Polyethylene (UHMW-PE) fibers, was developed for structural applications of rehabilitation. A comprehensive life cycle assessment (LCA) was carried out to study the environmental impact of interventions on an existing bridge using PE-UHPFRC compared with conventional UHPFRC and post-tensioned reinforced concrete methods in three categories of global warming potential (GWP), cumulative energy demand (CED), and ecological scarcity (UBP). The results showed 55% and 29% decreases in the environmental impact of the PE-UHPFRC compared with reinforced concrete and conventional UHPFRC methods, respectively, which highlighted the effectiveness of this material for the rehabilitation/strengthening of structures from the viewpoint of environmental impact.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/24/6923/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11246923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/24/6923/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11246923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Feb 2022 Italy, Switzerland, FrancePublisher:MDPI AG Carcassi, Olga Beatrice; Minotti, Pietro; Habert, Guillaume; Paoletti, Ingrid; Claude, Sophie; Pittau, Francesco;handle: 11311/1197679
This research explores the carbon removal of a novel bio-insulation composite, here called MycoBamboo, based on the combination of bamboo particles and mycelium as binder. First, an attributional life cycle assessment (LCA) was performed to define the carbon footprint of a European bamboo plantation and a bio-insulation composite, as well as its ability to remove CO2 along its lifecycle at a laboratory scale. Secondly, the Global Worming Potential (GWP) was estimated through a dynamic LCA with selected end-of-life and technical replacement scenarios. Finally, a building wall application was analyzed to measure the carbon saving potential of the MycoBamboo when compared with alternative insulation materials applied as an exterior thermal insulation composite system. The results demonstrate that despite the negative GWP values of the biogenic CO2, the final Net-GWP was positive. The technical replacement scenarios had an influence on the final Net-GWP values, and a longer storage period is preferred to more frequent insulation substitution. The type of energy source and the deactivation phase play important roles in the mitigation of climate change. Therefore, to make the MycoBamboo competitive as an insulation system at the industrial scale, it is fundamental to identify alternative low-energy deactivation modes and shift all energy-intensity activities during the production phase to renewable energy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1384/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/3/1384/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:MDPI AG Anita Naneva; Marcella Bonanomi; Alexander Hollberg; Guillaume Habert; Daniel Hall;The building sector has a significant potential to reduce the material resource demand needed for construction and therefore, greenhouse gas (GHG) emissions. Digitalization can help to make use of this potential and improve sustainability throughout the entire building’s life cycle. One way to address this potential is through the integration of Life Cycle Assessment (LCA) into the building process by employing Building Information Modeling (BIM). BIM can reduce the effort needed to carry out an LCA, and therefore, facilitate the integration into the building process. A review of current industry practice and scientific literature shows that companies are lacking the incentive to apply LCA. If applied, there are two main approaches. Either the LCA is performed in a simplified way at the beginning of the building process using imprecise techniques, or it is done at the very end when all the needed information is available, but it is too late for decision-making. One reason for this is the lack of methods, workflows and tools to implement BIM-LCA integration over the whole building development. Therefore, the main objective of this study is to develop an integrated BIM-LCA method for the entire building process by relating it to an established workflow. To avoid an additional effort for practitioners, an existing structure for cost estimation in the Swiss context is used. The established method is implemented in a tool and used in a case study in Switzerland to test the approach. The results of this study show that LCA can be performed continuously in each building phase over the entire building process using existing Building Information Modeling (BIM) techniques for cost estimation. The main benefit of this approach is that it simplifies the application of LCA in the building process and therefore gives incentives for companies to apply it. Moreover, the re-work caused by the need for re-entering data and the usage of many different software tools that characterize most of the current LCA practices is minimized. Furthermore, decision-making, both at the element and building levels, is supported.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/9/3748/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12093748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/9/3748/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12093748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:MDPI AG Authors: Christina Kiamili; Alexander Hollberg; Guillaume Habert;The global shift towards embodied carbon reduction in the building sector has indicated the need for a detailed analysis of environmental impacts across the whole lifecycle of buildings. The environmental impact of heating, ventilation, and air conditioning (HVAC) systems has rarely been studied in detail. Most of the published studies are based on assumptions and rule of thumb techniques. In this study, the requirements and methods to perform a detailed life cycle assessment (LCA) for HVAC systems based on building information modelling (BIM) are assessed and framed for the first time. The approach of linking external product data information to objects using visual programming language (VPL) is tested, and its benefits over the existing workflows are presented. The detailed BIM model of a newly built office building in Switzerland is used as a case study. In addition, detailed project documentation is used to ensure the plausibility of the calculated impact. The LCA results show that the embodied impact of the HVAC systems is three times higher than the targets provided by the Swiss Energy Efficiency Path (SIA 2040). Furthermore, it is shown that the embodied impact of HVAC systems lies in the range of 15–36% of the total embodied impact of office buildings. Nevertheless, further research and similar case studies are needed to provide a robust picture of the embodied environmental impact of HVAC systems. The results could contribute to setting stricter targets in line with the vision of decarbonization of the building sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Dec 2023 SwitzerlandPublisher:MDPI AG Junjie Li; Xijun Wu; Sharon K. W. Chow; Qiushi Zhuang; Guillaume Habert;Low temperatures and high humidity often occur in the northern basins and mountainous regions of China. This research reveals a common winter indoor environment in this rural areas characterized by low-temperature and high-humidity indoor thermal conditions. Improving this environment directly with equipment would inevitably result in significant energy consumption. Therefore, comprehending the thermal performance mechanisms of different structural building materials is of vital importance as it provides crucial baseline values for environmental improvement. This study conducted a survey utilizing user questionnaires, resulting in the collection of 214 valid responses. Additionally, a local experiment regarding thermal comfort was conducted. Simultaneously, this study monitored the indoor physical environments of these houses (a sample of 10 rooms was taken from earth houses and 12 rooms from brick houses). Parameters measured on site included air temperature, relative humidity, light illumination, and CO2. The results showed that the humidity inside the earth houses is more stable and regression models can be developed between thermal sensations and temperature for long-term residents. The residents of these earth houses are more sensitive to temperature step. In contrast, the residents of brick houses, experiencing greater environmental variability, demonstrated lower sensitivity and greater adaptability to temperature changes. In addition, heating from bottom to top is more comfortable and healthier for the residents of brick houses in Gansu. Moreover, it is more favorable for the inhabitants’ livelihood to regulate the temperature steps to a maximum of 4 °C. This study provides valuable reference information for the future design of houses in low-temperature and high-humidity environments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152316428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152316428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021Embargo end date: 27 Nov 2021 SwitzerlandPublisher:MDPI AG Rafaela Tirado; Adélaïde Aublet; Sylvain Laurenceau; Mathieu Thorel; Mathilde Louërat; Guillaume Habert;Building demolition is one of the main sources of waste generation in urban areas and is a growing problem for cities due to the generated environmental impacts. To promote high levels of circular economy, it is necessary to better understand the waste-flow composition; nevertheless, material flow studies typically focus on low levels of detail. This article presents a model based on a bottom-up macro-component approach, which allows the multiscale characterization of construction materials and the estimation of demolition waste flows, a model that we call the BTP-flux model. Data mining, analytical techniques, and geographic information system (GIS) tools were used to assess different datasets available at the national level and develop a common database for French buildings: BDNB. Generic information for buildings in the BDNB is then enriched by coupling every building with a catalog of macro-components (TyPy), thus allowing the building’s physical description. Subsequently, stock and demolition flows are calculated by aggregation and classified into 32 waste categories. The BTP-flux model was applied in Île-de-France in a sample of 101,320 buildings for residential and non-residential uses, representative of the assessed population (1,968,242 buildings). In the case of Île-de-France, the building stock and the total demolition flows were estimated at 1382 Mt and 4065 kt, respectively. For its inter-regional areas—departments—, stock and demolition waste can vary between 85 and 138 tons/cap and 0.263 and 0.486 tons/cap/year, respectively. The mean of the total demolition wastes was estimated at 0.33 tons/cap/year for the region. Results could encourage scientists, planners, and stakeholders to develop pathways towards a circular economy in the construction sector by implementing strategies for better management of waste recovery and reintegrating in economic circuits, while preserving a maximum of their added value.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 02 Aug 2024 SwitzerlandPublisher:MDPI AG Authors: Marin Pellan; Denise Almeida; Mathilde Louërat; Guillaume Habert;Climate policies such as sectoral carbon budgets use national greenhouse gas emissions inventories to track the decarbonization of sectors. While they provide an important compass to guide climate action, the accounting framework in which they are embedded lacks flexibility for activities that are international and at the crossroads of different sectors. The building activities, being largely linked with important upstream emitters such as energy production or industrial activities, which can take place outside of national borders, are such an example. As legislation increasingly addresses the whole-life carbon emissions of buildings, it is vital to develop cross-sectoral accounting methods that effectively measure and monitor the overall impact of buildings. Such methods are essential for creating sound and holistic decarbonization pathways that align with sustainability policies. This article aims to provide a consistent approach for depicting the life-cycle emissions of buildings at the national level, using France as a case study. By integrating the different emission scopes with decarbonization pathways, this approach also enables the creation of comprehensive whole-life carbon budgets. The results show that the French building stock footprint reached 162 MtCO2eq in 2019, with 64% attributed to operational emissions, primarily from fossil fuel combustion, and the remainder to embodied emissions, mainly from upstream industrial and energy sectors. Overall, 20% of the emissions occurred outside the national borders. Under various global decarbonization pathways, the significance of embodied emissions is projected to increase, potentially comprising 78% of the life-cycle emissions by 2050 under the current policies. This underscores the necessity for climate policies to address emissions beyond territorial and operational boundaries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16166762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16166762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2018 SwitzerlandPublisher:MDPI AG Authors: Edwin Zea Escamilla; Guillaume Habert; Juan Francisco Correal Daza; Hector F. Archilla; +2 AuthorsEdwin Zea Escamilla; Guillaume Habert; Juan Francisco Correal Daza; Hector F. Archilla; Juan Sebastian Echeverry Fernández; David Trujillo;The past five decades have witnessed an unprecedented growth in population. This has led to an ever-growing housing demand. It has been proposed that the use of bio-based materials, and specifically bamboo, can help alleviate the housing demand in a sustainable manner. The present paper aims to assess the environmental impact caused by using four different construction materials (bamboo, brick, concrete hollow block, and engineered bamboo) in buildings. A comparative life cycle assessment (LCA) was carried out to measure the environmental impact of the different construction materials in the construction of single and multi-storey buildings. The LCA considered the extraction, production, transport, and use of the construction materials. The IPCC2013 evaluation method from the Intergovernmental Panel on Climate Change IPCC2013 was used for the calculations of CO2 emissions. The assessment was geographically located in Colombia, South America, and estimates the transport distances of the construction materials. The results show that transportation and reinforcing materials significantly contribute to the environmental impact, whereas the engineered bamboo construction system has the lowest environmental impact. The adoption of bamboo-based construction systems has a significant potential to support the regenerative development of regions where they could be used and might lead to long-lasting improvements to economies, environments, and livelihoods.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/9/3096/pdfData sources: Multidisciplinary Digital Publishing InstituteZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/9/3096/pdfData sources: Multidisciplinary Digital Publishing InstituteZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 17 Jun 2022 SwitzerlandPublisher:MDPI AG Authors: Eleni Eleftheriou; Luis Felipe Lopez Muñoz; Guillaume Habert; Edwin Zea Escamilla;The provision of sustainable housing solutions is one of the main challenges in emerging economy countries. Furthermore, it is clear that a sustainable solution should be based on renewable bio-based materials. Scientific and practical evidence clearly suggests that the use of bamboo in the provision of housing solutions provides communities with both environmental and socio-economic benefits via this strategy. One barrier to the promotion of this type of solution is the lack of knowledge on structural design and environmental performance. Moreover, access to assessment tools and methodologies is limited. The use of simplified Life Cycle Assessment (LCA) has exhibited great potential to increase accessibility, but the generation of life cycle inventory data remains a major issue. In this paper, we describe the development of a methodological approach to use parametric design to generate the data required to carry out simplified LCA of social housing solutions. Moreover, we present a case study assessing a housing unit using cement bamboo frame technology developed by the Base Bahay Foundation in the Philippines. The main parameters for the LCA of the buildings were identified through sensitivity analysis. Moreover, they show that parametric design is a valid approach to overcome the challenges of data generation at early stages of design. The proposed approach would enable users without civil and/or engineering background to carry out simplified LCA calculations. Thus, through methodological approaches, it is possible to reduce significantly the complexity associated with LCA and open new avenues for it application.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/12/7409/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/12/7409/pdfData sources: Multidisciplinary Digital Publishing InstituteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Embargo end date: 03 Nov 2021 Finland, SwitzerlandPublisher:MDPI AG Funded by:AKA | Steps towards the use of ..., EC | SULTANAKA| Steps towards the use of mine tailings in geopolymer materials: reactivity, CO2 sequestration and heavy metal stabilization ,EC| SULTANNatalia Pires Martins; Sumit Srivastava; Francisco Veiga Simão; He Niu; Priyadharshini Perumal; Ruben Snellings; Mirja Illikainen; Hilde Chambart; Guillaume Habert;Medium and highly sulfidic tailings are high-volume wastes that can lead to severe environmental damage if not properly managed. Due to the high content of sulfide minerals, these tailings can undergo weathering if put in contact with oxygen and water, generating acid mine drainage (AMD). The moderate-to-high sulfide content is also an important technical limitation for their implementation in the production of construction materials. This paper reviews the use of sulfidic tailings as raw material in construction products, with a focus on cement, concrete, and ceramics. When used as aggregates in concrete, this can lead to concrete degradation by internal sulfate attack. In building ceramics, their implementation without prior treatment is undesirable due to the formation of black reduction core, efflorescence, SOx emissions, and their associated costs. Moreover, their intrinsic low reactivity represents a barrier for their use as supplementary cementitious materials (SCMs) and as precursors for alkali-activated materials (AAMs). Nevertheless, the production of calcium sulfoaluminate (CSA) cement can be a suitable path for the valorization of medium and highly sulfidic tailings. Otherwise difficult to upcycle, sulfidic tailings could be used in the clinker raw meal as an alternative raw material. Not only the SO3 and SiO2-rich bulk material is incorporated into reactive clinker phases, but also some minor constituents in the tailings may contribute to the production of such low-CO2 cements at lower temperatures. Nevertheless, this valorization route remains poorly explored and demands further research.
Sustainability arrow_drop_down University of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - JultikaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132112150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down University of Oulu Repository - JultikaArticle . 2021Data sources: University of Oulu Repository - JultikaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132112150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu