- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Ryerson University Library and Archives Funded by:NSERCNSERCAuthors: Murray Moo-Young; Mehrab Mehrvar; William A. Anderson;<p>Photocatalytic degradation of tetrahydrofuran, 1,4-dioxane, and their mixture in a slurry photoreactor was studied. Using both GC/MS and ion chromatography (IC) methods, possible intermediates were detected and the reaction mechanism pathways for both compounds were proposed. Kinetic models were developed and the kinetic parameters were estimated using a statistical method of non-linear parameter estimation in which all experimental data were utilized. It was shown that tetrahydrofuran was disappeared via direct oxidation as well as hydroxyl radical attack. A modified Langmuir-Hinshelwood described the degradation behavior of tetrahydrofuran and the binary system. 1,4-Dioxane obeyed a simple Langmuir-Hinshelwood kinetic form in the single compound system. </p>
https://doi.org/10.3... arrow_drop_down https://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of PhotoenergyArticle . 2000 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32920/23696949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of PhotoenergyArticle . 2000 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32920/23696949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Ryerson University Library and Archives Funded by:NSERCNSERCAuthors: Murray Moo-Young; Mehrab Mehrvar; William A. Anderson;<p>Photocatalytic degradation of tetrahydrofuran, 1,4-dioxane, and their mixture in a slurry photoreactor was studied. Using both GC/MS and ion chromatography (IC) methods, possible intermediates were detected and the reaction mechanism pathways for both compounds were proposed. Kinetic models were developed and the kinetic parameters were estimated using a statistical method of non-linear parameter estimation in which all experimental data were utilized. It was shown that tetrahydrofuran was disappeared via direct oxidation as well as hydroxyl radical attack. A modified Langmuir-Hinshelwood described the degradation behavior of tetrahydrofuran and the binary system. 1,4-Dioxane obeyed a simple Langmuir-Hinshelwood kinetic form in the single compound system. </p>
https://doi.org/10.3... arrow_drop_down https://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of PhotoenergyArticle . 2000 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32920/23696949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of PhotoenergyArticle . 2000 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32920/23696949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:MDPI AG Authors: Juwairia Obaid; Ashraf Ramadan; Ali Elkamel; William Anderson;doi: 10.3390/en10020179
handle: 10012/18374
This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2) emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BYFull-Text: https://doi.org/10.3390/en10020179Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BYFull-Text: https://doi.org/10.3390/en10020179Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:MDPI AG Authors: Juwairia Obaid; Ashraf Ramadan; Ali Elkamel; William Anderson;doi: 10.3390/en10020179
handle: 10012/18374
This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2) emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BYFull-Text: https://doi.org/10.3390/en10020179Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BYFull-Text: https://doi.org/10.3390/en10020179Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: M. Moo-Young; F.W. Bai; William A. Anderson;pmid: 17964107
This article critically reviews some ethanol fermentation technologies from sugar and starch feedstocks, particularly those key aspects that have been neglected or misunderstood. Compared with Saccharomyces cerevisiae, the ethanol yield and productivity of Zymomonas mobilis are higher, because less biomass is produced and a higher metabolic rate of glucose is maintained through its special Entner-Doudoroff pathway. However, due to its specific substrate spectrum as well as the undesirability of its biomass to be used as animal feed, this species cannot readily replace S. cerevisiae in ethanol production. The steady state kinetic models developed for continuous ethanol fermentations show some discrepancies, making them unsuitable for predicting and optimizing the industrial processes. The dynamic behavior of the continuous ethanol fermentation under high gravity or very high gravity conditions has been neglected, which needs to be addressed in order to further increase the final ethanol concentration and save the energy consumption. Ethanol is a typical primary metabolite whose production is tightly coupled with the growth of yeast cells, indicating yeast must be produced as a co-product. Technically, the immobilization of yeast cells by supporting materials, particularly by gel entrapments, is not desirable for ethanol production, because not only is the growth of the yeast cells restrained, but also the slowly growing yeast cells are difficult to be removed from the systems. Moreover, the additional cost from the consumption of the supporting materials, the potential contamination of some supporting materials to the quality of the co-product animal feed, and the difficulty in the microbial contamination control all make the immobilized yeast cells economically unacceptable. In contrast, the self-immobilization of yeast cells through their flocculation can effectively overcome these drawbacks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2007.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu730 citations 730 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2007.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: M. Moo-Young; F.W. Bai; William A. Anderson;pmid: 17964107
This article critically reviews some ethanol fermentation technologies from sugar and starch feedstocks, particularly those key aspects that have been neglected or misunderstood. Compared with Saccharomyces cerevisiae, the ethanol yield and productivity of Zymomonas mobilis are higher, because less biomass is produced and a higher metabolic rate of glucose is maintained through its special Entner-Doudoroff pathway. However, due to its specific substrate spectrum as well as the undesirability of its biomass to be used as animal feed, this species cannot readily replace S. cerevisiae in ethanol production. The steady state kinetic models developed for continuous ethanol fermentations show some discrepancies, making them unsuitable for predicting and optimizing the industrial processes. The dynamic behavior of the continuous ethanol fermentation under high gravity or very high gravity conditions has been neglected, which needs to be addressed in order to further increase the final ethanol concentration and save the energy consumption. Ethanol is a typical primary metabolite whose production is tightly coupled with the growth of yeast cells, indicating yeast must be produced as a co-product. Technically, the immobilization of yeast cells by supporting materials, particularly by gel entrapments, is not desirable for ethanol production, because not only is the growth of the yeast cells restrained, but also the slowly growing yeast cells are difficult to be removed from the systems. Moreover, the additional cost from the consumption of the supporting materials, the potential contamination of some supporting materials to the quality of the co-product animal feed, and the difficulty in the microbial contamination control all make the immobilized yeast cells economically unacceptable. In contrast, the self-immobilization of yeast cells through their flocculation can effectively overcome these drawbacks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2007.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu730 citations 730 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2007.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCN. Benchapattarapong; William A. Anderson; F.W. Bai; F.W. Bai; M. Moo-Young;pmid: 15744504
A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-005-0399-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-005-0399-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCN. Benchapattarapong; William A. Anderson; F.W. Bai; F.W. Bai; M. Moo-Young;pmid: 15744504
A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-005-0399-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-005-0399-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley William A. Anderson; M. Moo-Young; F.W. Bai; F.W. Bai; Xumeng Ge;doi: 10.1002/bit.22043
pmid: 18949752
AbstractA bioreactor system composed of a stirred tank and three tubular bioreactors in series was established, and continuous ethanol fermentation was carried out using a general Saccharomyces cerevisiae strain and a very high gravity medium containing 280 g L−1 glucose, supplemented with 5 g L−1 yeast extract and 3 g L−1 peptone. Sustainable oscillations of glucose, ethanol, and biomass were observed when the tank was operated at the dilution rate of 0.027 h−1, which significantly affected ethanol fermentation performance of the system. After the tubular bioreactors were packed with 1/2″ Intalox ceramic saddles, the oscillations were attenuated and quasi‐steady states were achieved. Residence time distributions were studied for the packed bioreactors by the step input response technique using xylose as a tracer, which was added into the medium at a concentration of 20 g L−1, indicating that the backmixing alleviation assumed for the packed tubular bioreactors could not be established, and its contribution to the oscillation attenuation could not be verified. Furthermore, the role of the packing's yeast cell immobilization in the oscillation attenuation was investigated by packing the tubular bioreactors with packings with significant difference in yeast cell immobilization effects, and the experimental results revealed that only the Intalox ceramic saddles and wood chips with moderate yeast cell immobilization effects could attenuate the oscillations, and correspondingly, improved the ethanol fermentation performance of the system, while the porous polyurethane particles with good yeast cell immobilization effect could not. And the viability analysis for the immobilized yeast cells illustrated that the extremely lower yeast cell viability within the tubular bioreactors packed with the porous polyurethane particles could be the reason for their inefficiency, while the yeast cells loosely immobilized onto the surfaces of the Intalox ceramic saddles and wood chips could be renewed during the fermentation, guaranteeing their viability and making them more efficient in attenuating the oscillations. The packing Raschig rings without yeast cell immobilization effect did not affect the oscillatory behavior of the tubular bioreactors, further supporting the role of the yeast cell immobilization in the oscillation attenuation. Biotechnol. Bioeng. 2009;102: 113–121. © 2008 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.22043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.22043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley William A. Anderson; M. Moo-Young; F.W. Bai; F.W. Bai; Xumeng Ge;doi: 10.1002/bit.22043
pmid: 18949752
AbstractA bioreactor system composed of a stirred tank and three tubular bioreactors in series was established, and continuous ethanol fermentation was carried out using a general Saccharomyces cerevisiae strain and a very high gravity medium containing 280 g L−1 glucose, supplemented with 5 g L−1 yeast extract and 3 g L−1 peptone. Sustainable oscillations of glucose, ethanol, and biomass were observed when the tank was operated at the dilution rate of 0.027 h−1, which significantly affected ethanol fermentation performance of the system. After the tubular bioreactors were packed with 1/2″ Intalox ceramic saddles, the oscillations were attenuated and quasi‐steady states were achieved. Residence time distributions were studied for the packed bioreactors by the step input response technique using xylose as a tracer, which was added into the medium at a concentration of 20 g L−1, indicating that the backmixing alleviation assumed for the packed tubular bioreactors could not be established, and its contribution to the oscillation attenuation could not be verified. Furthermore, the role of the packing's yeast cell immobilization in the oscillation attenuation was investigated by packing the tubular bioreactors with packings with significant difference in yeast cell immobilization effects, and the experimental results revealed that only the Intalox ceramic saddles and wood chips with moderate yeast cell immobilization effects could attenuate the oscillations, and correspondingly, improved the ethanol fermentation performance of the system, while the porous polyurethane particles with good yeast cell immobilization effect could not. And the viability analysis for the immobilized yeast cells illustrated that the extremely lower yeast cell viability within the tubular bioreactors packed with the porous polyurethane particles could be the reason for their inefficiency, while the yeast cells loosely immobilized onto the surfaces of the Intalox ceramic saddles and wood chips could be renewed during the fermentation, guaranteeing their viability and making them more efficient in attenuating the oscillations. The packing Raschig rings without yeast cell immobilization effect did not affect the oscillatory behavior of the tubular bioreactors, further supporting the role of the yeast cell immobilization in the oscillation attenuation. Biotechnol. Bioeng. 2009;102: 113–121. © 2008 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.22043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.22043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Authors: Zisheng Zhang; William A. Anderson; Lianfeng Zhang;Abstract A photon-effective rotating disc photocatalytic reactor configuration was proposed and compared to a similar rotating drum reactor. The photocatalytic degradation of a model non-volatile aromatic compound, 4-chlorophenol, was investigated as a function of rotation speed, angle of disc, and radiation intensity. The irradiance distribution on the surface of the disc/drum was analyzed by a diffuse emission model, which was verified by experimental measurement. The profiles of the predicted local-area-specific rate of energy absorption (LASREA) indicated its sensitivity to the geometrical dimensions. A new kinetic model was proposed including the effects of water film thickness and irradiance. Based on the model and irradiance distribution, a rigorous kinetic analysis was conducted in accordance with mass balance and mass transfer. The experimental data were compared with the mathematical prediction, showing good agreement. With respect to scale-up parameters, the results suggested that the surface velocity, ϕω/2 (ϕ: diameter of the disc, ω: rotation speed) is an important factor which determines the thickness of water film, while diameter and angle of the disc determine the irradiance distribution. The incident photon flow rate has no relation to the angle of the disc, but a small angle will provide a larger illuminated area and capture more reflected photons. Comparatively, the larger illuminated area is much more important than capture of reflected photons for improvement of the photonic efficiency. In the rotating disc reactor, the photon number increased 11.2% due to capture of reflections, and the maximum initial photonic efficiency reached 0.0251 mol-4-CP/einstein, while in the drum reactor it was 0.0145 mol-4-CP/einstein.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2006.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2006.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Authors: Zisheng Zhang; William A. Anderson; Lianfeng Zhang;Abstract A photon-effective rotating disc photocatalytic reactor configuration was proposed and compared to a similar rotating drum reactor. The photocatalytic degradation of a model non-volatile aromatic compound, 4-chlorophenol, was investigated as a function of rotation speed, angle of disc, and radiation intensity. The irradiance distribution on the surface of the disc/drum was analyzed by a diffuse emission model, which was verified by experimental measurement. The profiles of the predicted local-area-specific rate of energy absorption (LASREA) indicated its sensitivity to the geometrical dimensions. A new kinetic model was proposed including the effects of water film thickness and irradiance. Based on the model and irradiance distribution, a rigorous kinetic analysis was conducted in accordance with mass balance and mass transfer. The experimental data were compared with the mathematical prediction, showing good agreement. With respect to scale-up parameters, the results suggested that the surface velocity, ϕω/2 (ϕ: diameter of the disc, ω: rotation speed) is an important factor which determines the thickness of water film, while diameter and angle of the disc determine the irradiance distribution. The incident photon flow rate has no relation to the angle of the disc, but a small angle will provide a larger illuminated area and capture more reflected photons. Comparatively, the larger illuminated area is much more important than capture of reflected photons for improvement of the photonic efficiency. In the rotating disc reactor, the photon number increased 11.2% due to capture of reflections, and the maximum initial photonic efficiency reached 0.0251 mol-4-CP/einstein, while in the drum reactor it was 0.0145 mol-4-CP/einstein.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2006.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2006.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV William A. Anderson; L.J. Chen; M. Moo-Young; F.W. Bai; Zisheng Zhang;pmid: 15163519
A combined bioreactor system, composed of a stirred tank and a three-stage tubular bioreactor in series and with a total working volume of 3260 ml, was established. Continuous ethanol production was carried out using Saccharomyces cerevisiae and a very high gravity (VHG) medium containing 280 g l(-1) glucose. An average ethanol concentration of 124.6 g l(-1) or 15.8% (v) was produced when the bioreactor system was operated at a dilution rate of 0.012 h(-1). The yield of ethanol to glucose consumed was calculated to be 0.484 or 94.7% of its theoretical value of 0.511 when ethanol entrapped in the exhaust gas was incorporated. Meanwhile, quasi-steady states and non-steady oscillations were observed for residual glucose, ethanol and biomass concentrations for all of these bioreactors during their operations. Models that can be used to predict yeast cell lysis and viability loss were developed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2004.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu115 citations 115 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2004.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV William A. Anderson; L.J. Chen; M. Moo-Young; F.W. Bai; Zisheng Zhang;pmid: 15163519
A combined bioreactor system, composed of a stirred tank and a three-stage tubular bioreactor in series and with a total working volume of 3260 ml, was established. Continuous ethanol production was carried out using Saccharomyces cerevisiae and a very high gravity (VHG) medium containing 280 g l(-1) glucose. An average ethanol concentration of 124.6 g l(-1) or 15.8% (v) was produced when the bioreactor system was operated at a dilution rate of 0.012 h(-1). The yield of ethanol to glucose consumed was calculated to be 0.484 or 94.7% of its theoretical value of 0.511 when ethanol entrapped in the exhaust gas was incorporated. Meanwhile, quasi-steady states and non-steady oscillations were observed for residual glucose, ethanol and biomass concentrations for all of these bioreactors during their operations. Models that can be used to predict yeast cell lysis and viability loss were developed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2004.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu115 citations 115 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2004.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Wiley Authors: M. Moo-Young; F.W. Bai; William A. Anderson; L.J. Chen;doi: 10.1002/bit.20221
pmid: 15470717
AbstractThe quasi‐steady‐states, marked by small fluctuations of residual glucose, ethanol, and biomass concentrations, and sustainable oscillations marked by big fluctuations of these monitored fermentation parameters were observed during the continuous ethanol fermentation of Saccharomyces cerevisiae when very high gravity media were fed and correspondingly high ethanol concentrations reached. A high ethanol concentration was shown to be one of the main factors that incited these oscillations, although the residual glucose level affected the patterns of these oscillations to some extent. The lag response of S. cerevisiae to high ethanol stress that causes the shifts of morphology, viability loss, and death of yeast cells is assumed to be one of the probable mechanisms behind these oscillations. It was predicted that the longer the delay of this response was, the longer the oscillation periods would be, which was validated by the experimental data and the comparison with the oscillatory behaviors reported for the ethanologen bacterium, Zymomonas mobilis. Furthermore, three tubular bioreactors in series were arranged to follow a stirred tank bioreactor to attenuate these oscillations. However, exaggerated oscillations were observed for the residual glucose, ethanol, and biomass concentrations measured in the broth from these tubular bioreactors. After the tubular reactors were packed with Intalox ceramic saddle packing, these oscillations were effectively attenuated and quasi‐steady‐states were observed during which there were very small fluctuations of residual glucose, ethanol, and biomass within the entire experimental run. © 2004 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Wiley Authors: M. Moo-Young; F.W. Bai; William A. Anderson; L.J. Chen;doi: 10.1002/bit.20221
pmid: 15470717
AbstractThe quasi‐steady‐states, marked by small fluctuations of residual glucose, ethanol, and biomass concentrations, and sustainable oscillations marked by big fluctuations of these monitored fermentation parameters were observed during the continuous ethanol fermentation of Saccharomyces cerevisiae when very high gravity media were fed and correspondingly high ethanol concentrations reached. A high ethanol concentration was shown to be one of the main factors that incited these oscillations, although the residual glucose level affected the patterns of these oscillations to some extent. The lag response of S. cerevisiae to high ethanol stress that causes the shifts of morphology, viability loss, and death of yeast cells is assumed to be one of the probable mechanisms behind these oscillations. It was predicted that the longer the delay of this response was, the longer the oscillation periods would be, which was validated by the experimental data and the comparison with the oscillatory behaviors reported for the ethanologen bacterium, Zymomonas mobilis. Furthermore, three tubular bioreactors in series were arranged to follow a stirred tank bioreactor to attenuate these oscillations. However, exaggerated oscillations were observed for the residual glucose, ethanol, and biomass concentrations measured in the broth from these tubular bioreactors. After the tubular reactors were packed with Intalox ceramic saddle packing, these oscillations were effectively attenuated and quasi‐steady‐states were observed during which there were very small fluctuations of residual glucose, ethanol, and biomass within the entire experimental run. © 2004 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors: Jason Grove; Murray Moo-Young; William A. Anderson;pmid: 17926031
The bacterial community structure in a biofilter treating ethanol was investigated using community level physiological profiling. Laboratory scale biofilters of two sizes (5 or 11.5 cm internal diameter with 30 or 67 cm packed height, respectively) were packed with compost and a humidified airstream loaded with ethanol passed through them. Good removal efficiencies (82-100%) and elimination capacities (49-205 g ethanol m(-3) h(-1)) were observed in all units. Compost packing media samples were extracted and the community level physiological profiles assayed using Biolog Ecoplates. The community structure was found to be similar over a range of a few centimetres. No differences were observed between sample sizes of 0.5-1 and 6 g, and therefore, the smaller sample size (typical of that used in previous studies) is appropriate for use in the future. Two studies of parallel systems showed that the community structure diverged during the acclimation period (10 days) in one pair, but in another pair, no divergence was observed and a similar shift in community profile was observed in both units between 25 and 40 days of operation. Community level physiological profiling with Biolog Ecoplates is a useful method for detecting differences between and changes within the bacterial communities in biofilters.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-007-1189-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-007-1189-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors: Jason Grove; Murray Moo-Young; William A. Anderson;pmid: 17926031
The bacterial community structure in a biofilter treating ethanol was investigated using community level physiological profiling. Laboratory scale biofilters of two sizes (5 or 11.5 cm internal diameter with 30 or 67 cm packed height, respectively) were packed with compost and a humidified airstream loaded with ethanol passed through them. Good removal efficiencies (82-100%) and elimination capacities (49-205 g ethanol m(-3) h(-1)) were observed in all units. Compost packing media samples were extracted and the community level physiological profiles assayed using Biolog Ecoplates. The community structure was found to be similar over a range of a few centimetres. No differences were observed between sample sizes of 0.5-1 and 6 g, and therefore, the smaller sample size (typical of that used in previous studies) is appropriate for use in the future. Two studies of parallel systems showed that the community structure diverged during the acclimation period (10 days) in one pair, but in another pair, no divergence was observed and a similar shift in community profile was observed in both units between 25 and 40 days of operation. Community level physiological profiling with Biolog Ecoplates is a useful method for detecting differences between and changes within the bacterial communities in biofilters.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-007-1189-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-007-1189-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Ryerson University Library and Archives Funded by:NSERCNSERCAuthors: Murray Moo-Young; Mehrab Mehrvar; William A. Anderson;<p>Photocatalytic degradation of tetrahydrofuran, 1,4-dioxane, and their mixture in a slurry photoreactor was studied. Using both GC/MS and ion chromatography (IC) methods, possible intermediates were detected and the reaction mechanism pathways for both compounds were proposed. Kinetic models were developed and the kinetic parameters were estimated using a statistical method of non-linear parameter estimation in which all experimental data were utilized. It was shown that tetrahydrofuran was disappeared via direct oxidation as well as hydroxyl radical attack. A modified Langmuir-Hinshelwood described the degradation behavior of tetrahydrofuran and the binary system. 1,4-Dioxane obeyed a simple Langmuir-Hinshelwood kinetic form in the single compound system. </p>
https://doi.org/10.3... arrow_drop_down https://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of PhotoenergyArticle . 2000 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32920/23696949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of PhotoenergyArticle . 2000 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32920/23696949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Ryerson University Library and Archives Funded by:NSERCNSERCAuthors: Murray Moo-Young; Mehrab Mehrvar; William A. Anderson;<p>Photocatalytic degradation of tetrahydrofuran, 1,4-dioxane, and their mixture in a slurry photoreactor was studied. Using both GC/MS and ion chromatography (IC) methods, possible intermediates were detected and the reaction mechanism pathways for both compounds were proposed. Kinetic models were developed and the kinetic parameters were estimated using a statistical method of non-linear parameter estimation in which all experimental data were utilized. It was shown that tetrahydrofuran was disappeared via direct oxidation as well as hydroxyl radical attack. A modified Langmuir-Hinshelwood described the degradation behavior of tetrahydrofuran and the binary system. 1,4-Dioxane obeyed a simple Langmuir-Hinshelwood kinetic form in the single compound system. </p>
https://doi.org/10.3... arrow_drop_down https://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of PhotoenergyArticle . 2000 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32920/23696949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.32920/23696...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of PhotoenergyArticle . 2000 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32920/23696949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:MDPI AG Authors: Juwairia Obaid; Ashraf Ramadan; Ali Elkamel; William Anderson;doi: 10.3390/en10020179
handle: 10012/18374
This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2) emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BYFull-Text: https://doi.org/10.3390/en10020179Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BYFull-Text: https://doi.org/10.3390/en10020179Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:MDPI AG Authors: Juwairia Obaid; Ashraf Ramadan; Ali Elkamel; William Anderson;doi: 10.3390/en10020179
handle: 10012/18374
This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2) emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BYFull-Text: https://doi.org/10.3390/en10020179Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Waterl... arrow_drop_down University of Waterloo, Canada: Institutional RepositoryArticle . 2017License: CC BYFull-Text: https://doi.org/10.3390/en10020179Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10020179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: M. Moo-Young; F.W. Bai; William A. Anderson;pmid: 17964107
This article critically reviews some ethanol fermentation technologies from sugar and starch feedstocks, particularly those key aspects that have been neglected or misunderstood. Compared with Saccharomyces cerevisiae, the ethanol yield and productivity of Zymomonas mobilis are higher, because less biomass is produced and a higher metabolic rate of glucose is maintained through its special Entner-Doudoroff pathway. However, due to its specific substrate spectrum as well as the undesirability of its biomass to be used as animal feed, this species cannot readily replace S. cerevisiae in ethanol production. The steady state kinetic models developed for continuous ethanol fermentations show some discrepancies, making them unsuitable for predicting and optimizing the industrial processes. The dynamic behavior of the continuous ethanol fermentation under high gravity or very high gravity conditions has been neglected, which needs to be addressed in order to further increase the final ethanol concentration and save the energy consumption. Ethanol is a typical primary metabolite whose production is tightly coupled with the growth of yeast cells, indicating yeast must be produced as a co-product. Technically, the immobilization of yeast cells by supporting materials, particularly by gel entrapments, is not desirable for ethanol production, because not only is the growth of the yeast cells restrained, but also the slowly growing yeast cells are difficult to be removed from the systems. Moreover, the additional cost from the consumption of the supporting materials, the potential contamination of some supporting materials to the quality of the co-product animal feed, and the difficulty in the microbial contamination control all make the immobilized yeast cells economically unacceptable. In contrast, the self-immobilization of yeast cells through their flocculation can effectively overcome these drawbacks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2007.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu730 citations 730 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2007.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: M. Moo-Young; F.W. Bai; William A. Anderson;pmid: 17964107
This article critically reviews some ethanol fermentation technologies from sugar and starch feedstocks, particularly those key aspects that have been neglected or misunderstood. Compared with Saccharomyces cerevisiae, the ethanol yield and productivity of Zymomonas mobilis are higher, because less biomass is produced and a higher metabolic rate of glucose is maintained through its special Entner-Doudoroff pathway. However, due to its specific substrate spectrum as well as the undesirability of its biomass to be used as animal feed, this species cannot readily replace S. cerevisiae in ethanol production. The steady state kinetic models developed for continuous ethanol fermentations show some discrepancies, making them unsuitable for predicting and optimizing the industrial processes. The dynamic behavior of the continuous ethanol fermentation under high gravity or very high gravity conditions has been neglected, which needs to be addressed in order to further increase the final ethanol concentration and save the energy consumption. Ethanol is a typical primary metabolite whose production is tightly coupled with the growth of yeast cells, indicating yeast must be produced as a co-product. Technically, the immobilization of yeast cells by supporting materials, particularly by gel entrapments, is not desirable for ethanol production, because not only is the growth of the yeast cells restrained, but also the slowly growing yeast cells are difficult to be removed from the systems. Moreover, the additional cost from the consumption of the supporting materials, the potential contamination of some supporting materials to the quality of the co-product animal feed, and the difficulty in the microbial contamination control all make the immobilized yeast cells economically unacceptable. In contrast, the self-immobilization of yeast cells through their flocculation can effectively overcome these drawbacks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2007.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu730 citations 730 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2007.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCN. Benchapattarapong; William A. Anderson; F.W. Bai; F.W. Bai; M. Moo-Young;pmid: 15744504
A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-005-0399-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-005-0399-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCN. Benchapattarapong; William A. Anderson; F.W. Bai; F.W. Bai; M. Moo-Young;pmid: 15744504
A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-005-0399-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2005 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-005-0399-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley William A. Anderson; M. Moo-Young; F.W. Bai; F.W. Bai; Xumeng Ge;doi: 10.1002/bit.22043
pmid: 18949752
AbstractA bioreactor system composed of a stirred tank and three tubular bioreactors in series was established, and continuous ethanol fermentation was carried out using a general Saccharomyces cerevisiae strain and a very high gravity medium containing 280 g L−1 glucose, supplemented with 5 g L−1 yeast extract and 3 g L−1 peptone. Sustainable oscillations of glucose, ethanol, and biomass were observed when the tank was operated at the dilution rate of 0.027 h−1, which significantly affected ethanol fermentation performance of the system. After the tubular bioreactors were packed with 1/2″ Intalox ceramic saddles, the oscillations were attenuated and quasi‐steady states were achieved. Residence time distributions were studied for the packed bioreactors by the step input response technique using xylose as a tracer, which was added into the medium at a concentration of 20 g L−1, indicating that the backmixing alleviation assumed for the packed tubular bioreactors could not be established, and its contribution to the oscillation attenuation could not be verified. Furthermore, the role of the packing's yeast cell immobilization in the oscillation attenuation was investigated by packing the tubular bioreactors with packings with significant difference in yeast cell immobilization effects, and the experimental results revealed that only the Intalox ceramic saddles and wood chips with moderate yeast cell immobilization effects could attenuate the oscillations, and correspondingly, improved the ethanol fermentation performance of the system, while the porous polyurethane particles with good yeast cell immobilization effect could not. And the viability analysis for the immobilized yeast cells illustrated that the extremely lower yeast cell viability within the tubular bioreactors packed with the porous polyurethane particles could be the reason for their inefficiency, while the yeast cells loosely immobilized onto the surfaces of the Intalox ceramic saddles and wood chips could be renewed during the fermentation, guaranteeing their viability and making them more efficient in attenuating the oscillations. The packing Raschig rings without yeast cell immobilization effect did not affect the oscillatory behavior of the tubular bioreactors, further supporting the role of the yeast cell immobilization in the oscillation attenuation. Biotechnol. Bioeng. 2009;102: 113–121. © 2008 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.22043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.22043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley William A. Anderson; M. Moo-Young; F.W. Bai; F.W. Bai; Xumeng Ge;doi: 10.1002/bit.22043
pmid: 18949752
AbstractA bioreactor system composed of a stirred tank and three tubular bioreactors in series was established, and continuous ethanol fermentation was carried out using a general Saccharomyces cerevisiae strain and a very high gravity medium containing 280 g L−1 glucose, supplemented with 5 g L−1 yeast extract and 3 g L−1 peptone. Sustainable oscillations of glucose, ethanol, and biomass were observed when the tank was operated at the dilution rate of 0.027 h−1, which significantly affected ethanol fermentation performance of the system. After the tubular bioreactors were packed with 1/2″ Intalox ceramic saddles, the oscillations were attenuated and quasi‐steady states were achieved. Residence time distributions were studied for the packed bioreactors by the step input response technique using xylose as a tracer, which was added into the medium at a concentration of 20 g L−1, indicating that the backmixing alleviation assumed for the packed tubular bioreactors could not be established, and its contribution to the oscillation attenuation could not be verified. Furthermore, the role of the packing's yeast cell immobilization in the oscillation attenuation was investigated by packing the tubular bioreactors with packings with significant difference in yeast cell immobilization effects, and the experimental results revealed that only the Intalox ceramic saddles and wood chips with moderate yeast cell immobilization effects could attenuate the oscillations, and correspondingly, improved the ethanol fermentation performance of the system, while the porous polyurethane particles with good yeast cell immobilization effect could not. And the viability analysis for the immobilized yeast cells illustrated that the extremely lower yeast cell viability within the tubular bioreactors packed with the porous polyurethane particles could be the reason for their inefficiency, while the yeast cells loosely immobilized onto the surfaces of the Intalox ceramic saddles and wood chips could be renewed during the fermentation, guaranteeing their viability and making them more efficient in attenuating the oscillations. The packing Raschig rings without yeast cell immobilization effect did not affect the oscillatory behavior of the tubular bioreactors, further supporting the role of the yeast cell immobilization in the oscillation attenuation. Biotechnol. Bioeng. 2009;102: 113–121. © 2008 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.22043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.22043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Authors: Zisheng Zhang; William A. Anderson; Lianfeng Zhang;Abstract A photon-effective rotating disc photocatalytic reactor configuration was proposed and compared to a similar rotating drum reactor. The photocatalytic degradation of a model non-volatile aromatic compound, 4-chlorophenol, was investigated as a function of rotation speed, angle of disc, and radiation intensity. The irradiance distribution on the surface of the disc/drum was analyzed by a diffuse emission model, which was verified by experimental measurement. The profiles of the predicted local-area-specific rate of energy absorption (LASREA) indicated its sensitivity to the geometrical dimensions. A new kinetic model was proposed including the effects of water film thickness and irradiance. Based on the model and irradiance distribution, a rigorous kinetic analysis was conducted in accordance with mass balance and mass transfer. The experimental data were compared with the mathematical prediction, showing good agreement. With respect to scale-up parameters, the results suggested that the surface velocity, ϕω/2 (ϕ: diameter of the disc, ω: rotation speed) is an important factor which determines the thickness of water film, while diameter and angle of the disc determine the irradiance distribution. The incident photon flow rate has no relation to the angle of the disc, but a small angle will provide a larger illuminated area and capture more reflected photons. Comparatively, the larger illuminated area is much more important than capture of reflected photons for improvement of the photonic efficiency. In the rotating disc reactor, the photon number increased 11.2% due to capture of reflections, and the maximum initial photonic efficiency reached 0.0251 mol-4-CP/einstein, while in the drum reactor it was 0.0145 mol-4-CP/einstein.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2006.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2006.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Authors: Zisheng Zhang; William A. Anderson; Lianfeng Zhang;Abstract A photon-effective rotating disc photocatalytic reactor configuration was proposed and compared to a similar rotating drum reactor. The photocatalytic degradation of a model non-volatile aromatic compound, 4-chlorophenol, was investigated as a function of rotation speed, angle of disc, and radiation intensity. The irradiance distribution on the surface of the disc/drum was analyzed by a diffuse emission model, which was verified by experimental measurement. The profiles of the predicted local-area-specific rate of energy absorption (LASREA) indicated its sensitivity to the geometrical dimensions. A new kinetic model was proposed including the effects of water film thickness and irradiance. Based on the model and irradiance distribution, a rigorous kinetic analysis was conducted in accordance with mass balance and mass transfer. The experimental data were compared with the mathematical prediction, showing good agreement. With respect to scale-up parameters, the results suggested that the surface velocity, ϕω/2 (ϕ: diameter of the disc, ω: rotation speed) is an important factor which determines the thickness of water film, while diameter and angle of the disc determine the irradiance distribution. The incident photon flow rate has no relation to the angle of the disc, but a small angle will provide a larger illuminated area and capture more reflected photons. Comparatively, the larger illuminated area is much more important than capture of reflected photons for improvement of the photonic efficiency. In the rotating disc reactor, the photon number increased 11.2% due to capture of reflections, and the maximum initial photonic efficiency reached 0.0251 mol-4-CP/einstein, while in the drum reactor it was 0.0145 mol-4-CP/einstein.
Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2006.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering JournalArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2006.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV William A. Anderson; L.J. Chen; M. Moo-Young; F.W. Bai; Zisheng Zhang;pmid: 15163519
A combined bioreactor system, composed of a stirred tank and a three-stage tubular bioreactor in series and with a total working volume of 3260 ml, was established. Continuous ethanol production was carried out using Saccharomyces cerevisiae and a very high gravity (VHG) medium containing 280 g l(-1) glucose. An average ethanol concentration of 124.6 g l(-1) or 15.8% (v) was produced when the bioreactor system was operated at a dilution rate of 0.012 h(-1). The yield of ethanol to glucose consumed was calculated to be 0.484 or 94.7% of its theoretical value of 0.511 when ethanol entrapped in the exhaust gas was incorporated. Meanwhile, quasi-steady states and non-steady oscillations were observed for residual glucose, ethanol and biomass concentrations for all of these bioreactors during their operations. Models that can be used to predict yeast cell lysis and viability loss were developed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2004.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu115 citations 115 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2004.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV William A. Anderson; L.J. Chen; M. Moo-Young; F.W. Bai; Zisheng Zhang;pmid: 15163519
A combined bioreactor system, composed of a stirred tank and a three-stage tubular bioreactor in series and with a total working volume of 3260 ml, was established. Continuous ethanol production was carried out using Saccharomyces cerevisiae and a very high gravity (VHG) medium containing 280 g l(-1) glucose. An average ethanol concentration of 124.6 g l(-1) or 15.8% (v) was produced when the bioreactor system was operated at a dilution rate of 0.012 h(-1). The yield of ethanol to glucose consumed was calculated to be 0.484 or 94.7% of its theoretical value of 0.511 when ethanol entrapped in the exhaust gas was incorporated. Meanwhile, quasi-steady states and non-steady oscillations were observed for residual glucose, ethanol and biomass concentrations for all of these bioreactors during their operations. Models that can be used to predict yeast cell lysis and viability loss were developed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2004.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu115 citations 115 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2004.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Wiley Authors: M. Moo-Young; F.W. Bai; William A. Anderson; L.J. Chen;doi: 10.1002/bit.20221
pmid: 15470717
AbstractThe quasi‐steady‐states, marked by small fluctuations of residual glucose, ethanol, and biomass concentrations, and sustainable oscillations marked by big fluctuations of these monitored fermentation parameters were observed during the continuous ethanol fermentation of Saccharomyces cerevisiae when very high gravity media were fed and correspondingly high ethanol concentrations reached. A high ethanol concentration was shown to be one of the main factors that incited these oscillations, although the residual glucose level affected the patterns of these oscillations to some extent. The lag response of S. cerevisiae to high ethanol stress that causes the shifts of morphology, viability loss, and death of yeast cells is assumed to be one of the probable mechanisms behind these oscillations. It was predicted that the longer the delay of this response was, the longer the oscillation periods would be, which was validated by the experimental data and the comparison with the oscillatory behaviors reported for the ethanologen bacterium, Zymomonas mobilis. Furthermore, three tubular bioreactors in series were arranged to follow a stirred tank bioreactor to attenuate these oscillations. However, exaggerated oscillations were observed for the residual glucose, ethanol, and biomass concentrations measured in the broth from these tubular bioreactors. After the tubular reactors were packed with Intalox ceramic saddle packing, these oscillations were effectively attenuated and quasi‐steady‐states were observed during which there were very small fluctuations of residual glucose, ethanol, and biomass within the entire experimental run. © 2004 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Wiley Authors: M. Moo-Young; F.W. Bai; William A. Anderson; L.J. Chen;doi: 10.1002/bit.20221
pmid: 15470717
AbstractThe quasi‐steady‐states, marked by small fluctuations of residual glucose, ethanol, and biomass concentrations, and sustainable oscillations marked by big fluctuations of these monitored fermentation parameters were observed during the continuous ethanol fermentation of Saccharomyces cerevisiae when very high gravity media were fed and correspondingly high ethanol concentrations reached. A high ethanol concentration was shown to be one of the main factors that incited these oscillations, although the residual glucose level affected the patterns of these oscillations to some extent. The lag response of S. cerevisiae to high ethanol stress that causes the shifts of morphology, viability loss, and death of yeast cells is assumed to be one of the probable mechanisms behind these oscillations. It was predicted that the longer the delay of this response was, the longer the oscillation periods would be, which was validated by the experimental data and the comparison with the oscillatory behaviors reported for the ethanologen bacterium, Zymomonas mobilis. Furthermore, three tubular bioreactors in series were arranged to follow a stirred tank bioreactor to attenuate these oscillations. However, exaggerated oscillations were observed for the residual glucose, ethanol, and biomass concentrations measured in the broth from these tubular bioreactors. After the tubular reactors were packed with Intalox ceramic saddle packing, these oscillations were effectively attenuated and quasi‐steady‐states were observed during which there were very small fluctuations of residual glucose, ethanol, and biomass within the entire experimental run. © 2004 Wiley Periodicals, Inc.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.20221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors: Jason Grove; Murray Moo-Young; William A. Anderson;pmid: 17926031
The bacterial community structure in a biofilter treating ethanol was investigated using community level physiological profiling. Laboratory scale biofilters of two sizes (5 or 11.5 cm internal diameter with 30 or 67 cm packed height, respectively) were packed with compost and a humidified airstream loaded with ethanol passed through them. Good removal efficiencies (82-100%) and elimination capacities (49-205 g ethanol m(-3) h(-1)) were observed in all units. Compost packing media samples were extracted and the community level physiological profiles assayed using Biolog Ecoplates. The community structure was found to be similar over a range of a few centimetres. No differences were observed between sample sizes of 0.5-1 and 6 g, and therefore, the smaller sample size (typical of that used in previous studies) is appropriate for use in the future. Two studies of parallel systems showed that the community structure diverged during the acclimation period (10 days) in one pair, but in another pair, no divergence was observed and a similar shift in community profile was observed in both units between 25 and 40 days of operation. Community level physiological profiling with Biolog Ecoplates is a useful method for detecting differences between and changes within the bacterial communities in biofilters.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-007-1189-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-007-1189-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors: Jason Grove; Murray Moo-Young; William A. Anderson;pmid: 17926031
The bacterial community structure in a biofilter treating ethanol was investigated using community level physiological profiling. Laboratory scale biofilters of two sizes (5 or 11.5 cm internal diameter with 30 or 67 cm packed height, respectively) were packed with compost and a humidified airstream loaded with ethanol passed through them. Good removal efficiencies (82-100%) and elimination capacities (49-205 g ethanol m(-3) h(-1)) were observed in all units. Compost packing media samples were extracted and the community level physiological profiles assayed using Biolog Ecoplates. The community structure was found to be similar over a range of a few centimetres. No differences were observed between sample sizes of 0.5-1 and 6 g, and therefore, the smaller sample size (typical of that used in previous studies) is appropriate for use in the future. Two studies of parallel systems showed that the community structure diverged during the acclimation period (10 days) in one pair, but in another pair, no divergence was observed and a similar shift in community profile was observed in both units between 25 and 40 days of operation. Community level physiological profiling with Biolog Ecoplates is a useful method for detecting differences between and changes within the bacterial communities in biofilters.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-007-1189-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-007-1189-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu