- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:EC | INNOPATHSEC| INNOPATHSAuthors: Roland Cunha Montenegro; Panagiotis Fragkos; Audrey Helen Dobbins; Dorothea Schmid; +2 AuthorsRoland Cunha Montenegro; Panagiotis Fragkos; Audrey Helen Dobbins; Dorothea Schmid; Steve Pye; Ulrich Fahl;Since the signing of the 2030 Agenda for Sustainable Development by the United Nations Member States and the Yellow vest movement, it is clear that emission‐reducing policies should consider their distributional impacts to ensure a sustainable and equitable growth compatible with the Paris Agreement goals. To this end, the design of environmental and energy policies should be accompanied by an interdisciplinary analysis that includes potential effects on distinct groups of society (defined by income, age, or location), regions, and sectors. This work synthesizes common modeling frameworks used to assess technical, socio‐economic, and environmental aspects in policy analysis and the recent progress to portray distributional impacts in each of them. Furthermore, the main indicators produced by each method are highlighted and a critical review pointing to gaps and limitations that could be addressed by future research is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:EC | INNOPATHSEC| INNOPATHSAuthors: Roland Cunha Montenegro; Panagiotis Fragkos; Audrey Helen Dobbins; Dorothea Schmid; +2 AuthorsRoland Cunha Montenegro; Panagiotis Fragkos; Audrey Helen Dobbins; Dorothea Schmid; Steve Pye; Ulrich Fahl;Since the signing of the 2030 Agenda for Sustainable Development by the United Nations Member States and the Yellow vest movement, it is clear that emission‐reducing policies should consider their distributional impacts to ensure a sustainable and equitable growth compatible with the Paris Agreement goals. To this end, the design of environmental and energy policies should be accompanied by an interdisciplinary analysis that includes potential effects on distinct groups of society (defined by income, age, or location), regions, and sectors. This work synthesizes common modeling frameworks used to assess technical, socio‐economic, and environmental aspects in policy analysis and the recent progress to portray distributional impacts in each of them. Furthermore, the main indicators produced by each method are highlighted and a critical review pointing to gaps and limitations that could be addressed by future research is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Institute of Mathematical Sciences (AIMS) Funded by:EC | NAVIGATE, EC | WHYEC| NAVIGATE ,EC| WHYAuthors: Panagiotis Fragkos;<abstract> <p>The Paris Agreement goals require a rapid and deep reduction in global greenhouse gas emissions. Recent studies have shown the large potential of circular economy to reduce global emissions by improving resource and material efficiency practices. However, most large-scale energy system and Integrated Assessment Models used for mitigation analysis typically ignore or do not adequately represent circular economy measures. This study aims to fill in this research gap by enhancing a leading global energy system model with a representation of energy efficiency and circular economy considerations. The scenario-based analysis offers an improved understanding of the potentials, costs and impacts of circular economy in the decarbonisation context. The study shows that enhanced energy efficiency and increased material circularity can reduce energy consumption in all sectors, but most importantly in the industrial sector. They can also reduce the required carbon price to achieve Paris goals and the dependence on expensive, immature, and risky technologies, like Carbon Capture and Storage. Circular economy measures should be properly integrated with broad climate policies to provide a holistic and self-consistent framework to deeply reduce carbon emissions.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2022011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2022011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Institute of Mathematical Sciences (AIMS) Funded by:EC | NAVIGATE, EC | WHYEC| NAVIGATE ,EC| WHYAuthors: Panagiotis Fragkos;<abstract> <p>The Paris Agreement goals require a rapid and deep reduction in global greenhouse gas emissions. Recent studies have shown the large potential of circular economy to reduce global emissions by improving resource and material efficiency practices. However, most large-scale energy system and Integrated Assessment Models used for mitigation analysis typically ignore or do not adequately represent circular economy measures. This study aims to fill in this research gap by enhancing a leading global energy system model with a representation of energy efficiency and circular economy considerations. The scenario-based analysis offers an improved understanding of the potentials, costs and impacts of circular economy in the decarbonisation context. The study shows that enhanced energy efficiency and increased material circularity can reduce energy consumption in all sectors, but most importantly in the industrial sector. They can also reduce the required carbon price to achieve Paris goals and the dependence on expensive, immature, and risky technologies, like Carbon Capture and Storage. Circular economy measures should be properly integrated with broad climate policies to provide a holistic and self-consistent framework to deeply reduce carbon emissions.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2022011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2022011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Lefevre, Julien; Le Gallic, Thomas; Fragkos, Panagiotis; Mercure, Jean-François; +2 AuthorsLefevre, Julien; Le Gallic, Thomas; Fragkos, Panagiotis; Mercure, Jean-François; Simsek, Yeliz; Paroussos, Leonidas;This paper analyses structural change in the economy as a key but largely unexplored aspect of global socioeconomic and climate change mitigation scenarios. Structural change can actually drive energy and land use as much as economic growth and influence mitigation opportunities and barriers. Conversely, stringent climate policy is bound to induce specific structural and socioeconomic transformations that are still insufficiently understood. We introduce Multi-Sectoral Integrated Assessment Models as main tools to capture the key drivers of structural change and we conduct a multi-model study to assess main structural effectschanges of the sectoral composition and intensity of trade of global and regional economiesin a baseline and 2°C policy scenario by 2050. First, the range of baseline projections across models, for which we identify the main drivers, illustrates the uncertainty on future economic pathways-in emerging economies especially-and inform on plausible alternative futures with implications for energy use and emissions. Second, in all models, climate policy in the 2°C scenario imposes only a second-order impact on the economic structure at the macrosectoral level-agriculture, manufacturing and services-compared to changes modelled in the baseline. However, this hides more radical changes for individual industries-within the energy sector especially. The study, which adopts a top-down framing of global structural change, represents a starting point to kick-start a conversation and propose a new research agenda seeking to improve understanding of the structural change effects in socioeconomic and mitigation scenarios, and better inform policy assessments.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03622209Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2022.102510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03622209Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2022.102510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Lefevre, Julien; Le Gallic, Thomas; Fragkos, Panagiotis; Mercure, Jean-François; +2 AuthorsLefevre, Julien; Le Gallic, Thomas; Fragkos, Panagiotis; Mercure, Jean-François; Simsek, Yeliz; Paroussos, Leonidas;This paper analyses structural change in the economy as a key but largely unexplored aspect of global socioeconomic and climate change mitigation scenarios. Structural change can actually drive energy and land use as much as economic growth and influence mitigation opportunities and barriers. Conversely, stringent climate policy is bound to induce specific structural and socioeconomic transformations that are still insufficiently understood. We introduce Multi-Sectoral Integrated Assessment Models as main tools to capture the key drivers of structural change and we conduct a multi-model study to assess main structural effectschanges of the sectoral composition and intensity of trade of global and regional economiesin a baseline and 2°C policy scenario by 2050. First, the range of baseline projections across models, for which we identify the main drivers, illustrates the uncertainty on future economic pathways-in emerging economies especially-and inform on plausible alternative futures with implications for energy use and emissions. Second, in all models, climate policy in the 2°C scenario imposes only a second-order impact on the economic structure at the macrosectoral level-agriculture, manufacturing and services-compared to changes modelled in the baseline. However, this hides more radical changes for individual industries-within the energy sector especially. The study, which adopts a top-down framing of global structural change, represents a starting point to kick-start a conversation and propose a new research agenda seeking to improve understanding of the structural change effects in socioeconomic and mitigation scenarios, and better inform policy assessments.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03622209Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2022.102510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03622209Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2022.102510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Theofano Fotiou; Pantelis Capros; Panagiotis Fragkos;doi: 10.3390/en15062233
This paper presents the challenges of increasing the energy efficiency investments in European Union (EU) residential buildings in the context of achieving climate neutrality by 2050. The paper presents the results of the PRIMES buildings model in key energy policy applications to support cost-effective and fair policy making in buildings across Europe. The model covers, in detail, the building sector for all the EU Member States (MS), segmenting the buildings into many categories. The approach proposed includes non-market barriers in conventional microeconomic modelling, which combined with idiosyncratic preferences can capture poor energy efficiency choices and still represent rational behaviours. The model includes a detailed portrayal of policies specific to the sector, comprising economic and regulatory policies as well as institutional measures. The results of the model show that the removal of non-market barriers is of great importance in reducing energy consumption and increasing both the pace and the depth of renovation investment. However, the institutional measures alone are not enough to induce energy efficiency improvement to the scale required to achieve the climate neutrality objectives. Economic (i.e., subsidies) or regulatory measures (i.e., energy performance standards) are also required to decrease emissions and energy consumption in buildings and the paper compares different configurations thereof. The optimum policy mix obviously derives from a compromise among various aims including the cost-effectiveness of the policy budget and the distributional impacts across building and consumer types.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: SygmaSocial Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: SygmaSocial Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Theofano Fotiou; Pantelis Capros; Panagiotis Fragkos;doi: 10.3390/en15062233
This paper presents the challenges of increasing the energy efficiency investments in European Union (EU) residential buildings in the context of achieving climate neutrality by 2050. The paper presents the results of the PRIMES buildings model in key energy policy applications to support cost-effective and fair policy making in buildings across Europe. The model covers, in detail, the building sector for all the EU Member States (MS), segmenting the buildings into many categories. The approach proposed includes non-market barriers in conventional microeconomic modelling, which combined with idiosyncratic preferences can capture poor energy efficiency choices and still represent rational behaviours. The model includes a detailed portrayal of policies specific to the sector, comprising economic and regulatory policies as well as institutional measures. The results of the model show that the removal of non-market barriers is of great importance in reducing energy consumption and increasing both the pace and the depth of renovation investment. However, the institutional measures alone are not enough to induce energy efficiency improvement to the scale required to achieve the climate neutrality objectives. Economic (i.e., subsidies) or regulatory measures (i.e., energy performance standards) are also required to decrease emissions and energy consumption in buildings and the paper compares different configurations thereof. The optimum policy mix obviously derives from a compromise among various aims including the cost-effectiveness of the policy budget and the distributional impacts across building and consumer types.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: SygmaSocial Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: SygmaSocial Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 France, United Kingdom, Germany, Netherlands, Austria, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | PRISMA, EC | iDODDLE, EC | NAVIGATEEC| PRISMA ,EC| iDODDLE ,EC| NAVIGATEvan Heerden, Rik; Edelenbosch, Oreane; Daioglou, Vassilis; Le Gallic, Thomas; Baptista, Luiz; Di Bella, Alice; Colelli, Francesco; Emmerling, Johannes; Fragkos, Panagiotis; Hasse, Robin; Hoppe, Johanna; Kishimoto, Paul; Leblanc, Florian; Lefèvre, Julien; Luderer, Gunnar; Marangoni, Giacomo; Mastrucci, Alessio; Pettifor, Hazel; Pietzcker, Robert; Rochedo, Pedro; van Ruijven, Bas; Schaeffer, Roberto; Wilson, Charlie; Yeh, Sonia; Zisarou, Eleftheria; van Vuuren, Detlef;Abstract Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 France, United Kingdom, Germany, Netherlands, Austria, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | PRISMA, EC | iDODDLE, EC | NAVIGATEEC| PRISMA ,EC| iDODDLE ,EC| NAVIGATEvan Heerden, Rik; Edelenbosch, Oreane; Daioglou, Vassilis; Le Gallic, Thomas; Baptista, Luiz; Di Bella, Alice; Colelli, Francesco; Emmerling, Johannes; Fragkos, Panagiotis; Hasse, Robin; Hoppe, Johanna; Kishimoto, Paul; Leblanc, Florian; Lefèvre, Julien; Luderer, Gunnar; Marangoni, Giacomo; Mastrucci, Alessio; Pettifor, Hazel; Pietzcker, Robert; Rochedo, Pedro; van Ruijven, Bas; Schaeffer, Roberto; Wilson, Charlie; Yeh, Sonia; Zisarou, Eleftheria; van Vuuren, Detlef;Abstract Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | GREEN-WINEC| GREEN-WINLeonidas Paroussos; Antoine Mandel; Kostas Fragkiadakis; Panagiotis Fragkos; Jochen Hinkel; Zoi Vrontisi;The Paris agreement has provided a new framework for climate policy. Complementary forms of international collaboration, such as climate clubs, are probably necessary to foster and mainstream the process of gradual and voluntary increase in nationally determined contributions. We provide a quantitative macro-economic assessment of the costs and benefits that would be associated with different climate club architectures. We find that the key benefits that could structure the club are enhanced technological diffusion and the provision of low-cost climate finance, which reduce investment costs and also enables developing countries to take full advantage of technological diffusion. Although they face the highest absolute mitigation cost, China and India are the largest relative winners from club participation because the burden faced by these countries to finance their energy transition can be massively reduced following their participation in the club. Achieving the Paris Agreement goals may require complementary institutions such as climate clubs. Enhanced technological diffusion and the provision of low-cost climate finance are shown to support the creation of climate coalitions.
Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Paris 1 Panthéon-Sorbonne: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0501-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Paris 1 Panthéon-Sorbonne: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0501-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | GREEN-WINEC| GREEN-WINLeonidas Paroussos; Antoine Mandel; Kostas Fragkiadakis; Panagiotis Fragkos; Jochen Hinkel; Zoi Vrontisi;The Paris agreement has provided a new framework for climate policy. Complementary forms of international collaboration, such as climate clubs, are probably necessary to foster and mainstream the process of gradual and voluntary increase in nationally determined contributions. We provide a quantitative macro-economic assessment of the costs and benefits that would be associated with different climate club architectures. We find that the key benefits that could structure the club are enhanced technological diffusion and the provision of low-cost climate finance, which reduce investment costs and also enables developing countries to take full advantage of technological diffusion. Although they face the highest absolute mitigation cost, China and India are the largest relative winners from club participation because the burden faced by these countries to finance their energy transition can be massively reduced following their participation in the club. Achieving the Paris Agreement goals may require complementary institutions such as climate clubs. Enhanced technological diffusion and the provision of low-cost climate finance are shown to support the creation of climate coalitions.
Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Paris 1 Panthéon-Sorbonne: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0501-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Paris 1 Panthéon-Sorbonne: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0501-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:EC | NDC ASPECTS, EC | NAVIGATEEC| NDC ASPECTS ,EC| NAVIGATEAuthors: Rochedo, Pedro R. R.; Fragkos, Panagiotis; Garaffa, Rafael; Couto, Lilia Caiado; +4 AuthorsRochedo, Pedro R. R.; Fragkos, Panagiotis; Garaffa, Rafael; Couto, Lilia Caiado; Baptista, Luiz Bernardo; Cunha, Bruno S. L.; Schaeffer, Roberto; Szklo, Alexandre;doi: 10.3390/en14175567
Emissions pathways after COVID-19 will be shaped by how governments’ economic responses translate into infrastructure expansion, energy use, investment planning and societal changes. As a response to the COVID-19 crisis, most governments worldwide launched recovery packages aiming to boost their economies, support employment and enhance their competitiveness. Climate action is pledged to be embedded in most of these packages, but with sharp differences across countries. This paper provides novel evidence on the energy system and greenhouse gas (GHG) emissions implications of post-COVID-19 recovery packages by assessing the gap between pledged recovery packages and the actual investment needs of the energy transition to reach the Paris Agreement goals. Using two well-established Integrated Assessment Models (IAMs) and analysing various scenarios combining recovery packages and climate policies, we conclude that currently planned recovery from COVID-19 is not enough to enhance societal responses to climate urgency and that it should be significantly upscaled and prolonged to ensure compatibility with the Paris Agreement goals.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5567/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5567/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:EC | NDC ASPECTS, EC | NAVIGATEEC| NDC ASPECTS ,EC| NAVIGATEAuthors: Rochedo, Pedro R. R.; Fragkos, Panagiotis; Garaffa, Rafael; Couto, Lilia Caiado; +4 AuthorsRochedo, Pedro R. R.; Fragkos, Panagiotis; Garaffa, Rafael; Couto, Lilia Caiado; Baptista, Luiz Bernardo; Cunha, Bruno S. L.; Schaeffer, Roberto; Szklo, Alexandre;doi: 10.3390/en14175567
Emissions pathways after COVID-19 will be shaped by how governments’ economic responses translate into infrastructure expansion, energy use, investment planning and societal changes. As a response to the COVID-19 crisis, most governments worldwide launched recovery packages aiming to boost their economies, support employment and enhance their competitiveness. Climate action is pledged to be embedded in most of these packages, but with sharp differences across countries. This paper provides novel evidence on the energy system and greenhouse gas (GHG) emissions implications of post-COVID-19 recovery packages by assessing the gap between pledged recovery packages and the actual investment needs of the energy transition to reach the Paris Agreement goals. Using two well-established Integrated Assessment Models (IAMs) and analysing various scenarios combining recovery packages and climate policies, we conclude that currently planned recovery from COVID-19 is not enough to enhance societal responses to climate urgency and that it should be significantly upscaled and prolonged to ensure compatibility with the Paris Agreement goals.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5567/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5567/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | NDC ASPECTS, EC | NAVIGATEEC| NDC ASPECTS ,EC| NAVIGATEAuthors: Fragkos, Panagiotis;The Paris Agreement has set out ambitious climate goals aiming to keep global warming well-below 2 °C by 2100. This requires a large-scale transformation of the global energy system based on the uptake of several technological options to reduce drastically emissions, including expansion of renewable energy, energy efficiency improvements, and fuel switch towards low-carbon energy carriers. The current study explores the role of Carbon Capture and Storage (CCS) as a mitigation option, which provides a dispatchable source for carbon-free production of electricity and can also be used to decarbonise industrial processes. In the last decade, limited technology progress and slow deployment of CCS technologies worldwide have increased the concerns about the feasibility and potential for massive scale-up of CCS required for deep decarbonisation. The current study uses the state-of-the-art PROMETHEUS global energy demand and supply system model to examine the role and impacts of CCS deployment in a global decarbonisation context. By developing contrasted decarbonisation scenarios, the analysis illustrates that CCS deployment might bring about various economic and climate benefits for developing economies, in the form of reduced emissions, lower mitigation costs, ensuring the cost efficient integration of renewables, limiting stranded fossil fuel assets, and alleviating the negative distributional impacts of cost-optimal policies for developing economies.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 31 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | NDC ASPECTS, EC | NAVIGATEEC| NDC ASPECTS ,EC| NAVIGATEAuthors: Fragkos, Panagiotis;The Paris Agreement has set out ambitious climate goals aiming to keep global warming well-below 2 °C by 2100. This requires a large-scale transformation of the global energy system based on the uptake of several technological options to reduce drastically emissions, including expansion of renewable energy, energy efficiency improvements, and fuel switch towards low-carbon energy carriers. The current study explores the role of Carbon Capture and Storage (CCS) as a mitigation option, which provides a dispatchable source for carbon-free production of electricity and can also be used to decarbonise industrial processes. In the last decade, limited technology progress and slow deployment of CCS technologies worldwide have increased the concerns about the feasibility and potential for massive scale-up of CCS required for deep decarbonisation. The current study uses the state-of-the-art PROMETHEUS global energy demand and supply system model to examine the role and impacts of CCS deployment in a global decarbonisation context. By developing contrasted decarbonisation scenarios, the analysis illustrates that CCS deployment might bring about various economic and climate benefits for developing economies, in the form of reduced emissions, lower mitigation costs, ensuring the cost efficient integration of renewables, limiting stranded fossil fuel assets, and alleviating the negative distributional impacts of cost-optimal policies for developing economies.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 31 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Funded by:EC | WHYEC| WHYAuthors: Panagiotis Fragkos; Francesco Dalla Longa; Eleftheria Zisarou; Bob van der Zwaan; +2 AuthorsPanagiotis Fragkos; Francesco Dalla Longa; Eleftheria Zisarou; Bob van der Zwaan; Anastasis Giannousakis; Amir Fattahi;This study provides a quantitative analysis of future energy–climate developments at the global level using two well-established integrated assessment models (IAMs), PROMETHEUS and TIAM-ECN. The research aims to explore the results of these IAMs and identify avenues for improvement to achieve the goals of the Paris Agreement. The study focuses on the effects of varying assumptions for key model drivers, including carbon prices, technology costs, and global energy prices, within the context of stringent decarbonization policies. Diagnostic scenarios are utilized to assess the behavior of the models under varying exogenous assumptions for key drivers, aiming to verify the accuracy and reliability of the models and identify areas for optimization. The findings of this research demonstrate that both PROMETHEUS and TIAM-ECN exhibit similar responses to carbon pricing, with PROMETHEUS being more sensitive to this parameter than TIAM-ECN. The results highlight the importance of carbon pricing as an effective policy tool to drive decarbonization efforts. Additionally, the study reveals that variations in technology costs and global energy prices significantly impact the outcomes of the models. The identified sensitivities and responses of the IAMs to key model drivers offer guidance for policymakers to refine their policy decisions and develop effective strategies aligned with the objectives of the Paris Agreement. By understanding the behavior of the models under different assumptions, policymakers can make informed decisions to optimize decarbonization pathways and enhance the likelihood of meeting global climate goals.
Energies arrow_drop_down EnergiesArticle . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesArticle . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Funded by:EC | WHYEC| WHYAuthors: Panagiotis Fragkos; Francesco Dalla Longa; Eleftheria Zisarou; Bob van der Zwaan; +2 AuthorsPanagiotis Fragkos; Francesco Dalla Longa; Eleftheria Zisarou; Bob van der Zwaan; Anastasis Giannousakis; Amir Fattahi;This study provides a quantitative analysis of future energy–climate developments at the global level using two well-established integrated assessment models (IAMs), PROMETHEUS and TIAM-ECN. The research aims to explore the results of these IAMs and identify avenues for improvement to achieve the goals of the Paris Agreement. The study focuses on the effects of varying assumptions for key model drivers, including carbon prices, technology costs, and global energy prices, within the context of stringent decarbonization policies. Diagnostic scenarios are utilized to assess the behavior of the models under varying exogenous assumptions for key drivers, aiming to verify the accuracy and reliability of the models and identify areas for optimization. The findings of this research demonstrate that both PROMETHEUS and TIAM-ECN exhibit similar responses to carbon pricing, with PROMETHEUS being more sensitive to this parameter than TIAM-ECN. The results highlight the importance of carbon pricing as an effective policy tool to drive decarbonization efforts. Additionally, the study reveals that variations in technology costs and global energy prices significantly impact the outcomes of the models. The identified sensitivities and responses of the IAMs to key model drivers offer guidance for policymakers to refine their policy decisions and develop effective strategies aligned with the objectives of the Paris Agreement. By understanding the behavior of the models under different assumptions, policymakers can make informed decisions to optimize decarbonization pathways and enhance the likelihood of meeting global climate goals.
Energies arrow_drop_down EnergiesArticle . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesArticle . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | ENGAGE, EC | NAVIGATEEC| ENGAGE ,EC| NAVIGATEAuthors: Michel G. J. den Elzen; Ioannis Dafnomilis; Nicklas Forsell; Panagiotis Fragkos; +7 AuthorsMichel G. J. den Elzen; Ioannis Dafnomilis; Nicklas Forsell; Panagiotis Fragkos; Kostas Fragkiadakis; Niklas Höhne; Takeshi Kuramochi; Leonardo Nascimento; Mark Roelfsema; Heleen van Soest; Frank Sperling;pmid: 35755269
pmc: PMC9209833
Abstract By September 2021, 120 countries had submitted new or updated Nationally Determined Contributions (NDCs) to the UNFCCC in the context of the Paris Agreement. This study analyses the greenhouse gas (GHG) emissions and macroeconomic impacts of the new NDCs. The total impact of the updated NDCs of these countries on global emission levels by 2030 is an additional reduction of about 3.7 GtCO2e, compared to the previously submitted NDCs. This increases to about 4.1 GtCO2e, if also the lower projected emissions of the other countries are included. However, this total reduction needs to be four times greater to be consistent with keeping global temperature increase to well below 2 °C, and even eight times greater for 1.5 °C. Seven G20 economies have pledged stronger emission reduction targets for 2030 in their updated NDCs, leading to additional aggregated GHG emission reductions of about 3.1 GtCO2e, compared to those in the previous NDCs. The socio-economic impacts of the updated NDCs are limited in major economies, while structural shifts occur away from fossil fuel supply sectors and towards renewable electricity. However, two G20 economies have submitted new targets that will lead to an increase in emissions of about 0.3 GtCO2e, compared to their previous NDCs. The updated NDCs of non-G20 economies contain further net reductions. We conclude that countries should strongly increase the ambition levels of their updated NDC submissions to keep the climate goals of the Paris Agreement within reach.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2022 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA PUREArticle . 2022 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA DAREArticle . 2022License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022License: CC BYData sources: Pure Utrecht UniversityWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsMitigation and Adaptation Strategies for Global ChangeArticle . 2022Environmental Science & PolicyArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-954654/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 13 Powered bymore_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2022 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA PUREArticle . 2022 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA DAREArticle . 2022License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022License: CC BYData sources: Pure Utrecht UniversityWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsMitigation and Adaptation Strategies for Global ChangeArticle . 2022Environmental Science & PolicyArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-954654/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | ENGAGE, EC | NAVIGATEEC| ENGAGE ,EC| NAVIGATEAuthors: Michel G. J. den Elzen; Ioannis Dafnomilis; Nicklas Forsell; Panagiotis Fragkos; +7 AuthorsMichel G. J. den Elzen; Ioannis Dafnomilis; Nicklas Forsell; Panagiotis Fragkos; Kostas Fragkiadakis; Niklas Höhne; Takeshi Kuramochi; Leonardo Nascimento; Mark Roelfsema; Heleen van Soest; Frank Sperling;pmid: 35755269
pmc: PMC9209833
Abstract By September 2021, 120 countries had submitted new or updated Nationally Determined Contributions (NDCs) to the UNFCCC in the context of the Paris Agreement. This study analyses the greenhouse gas (GHG) emissions and macroeconomic impacts of the new NDCs. The total impact of the updated NDCs of these countries on global emission levels by 2030 is an additional reduction of about 3.7 GtCO2e, compared to the previously submitted NDCs. This increases to about 4.1 GtCO2e, if also the lower projected emissions of the other countries are included. However, this total reduction needs to be four times greater to be consistent with keeping global temperature increase to well below 2 °C, and even eight times greater for 1.5 °C. Seven G20 economies have pledged stronger emission reduction targets for 2030 in their updated NDCs, leading to additional aggregated GHG emission reductions of about 3.1 GtCO2e, compared to those in the previous NDCs. The socio-economic impacts of the updated NDCs are limited in major economies, while structural shifts occur away from fossil fuel supply sectors and towards renewable electricity. However, two G20 economies have submitted new targets that will lead to an increase in emissions of about 0.3 GtCO2e, compared to their previous NDCs. The updated NDCs of non-G20 economies contain further net reductions. We conclude that countries should strongly increase the ambition levels of their updated NDC submissions to keep the climate goals of the Paris Agreement within reach.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2022 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA PUREArticle . 2022 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA DAREArticle . 2022License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022License: CC BYData sources: Pure Utrecht UniversityWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsMitigation and Adaptation Strategies for Global ChangeArticle . 2022Environmental Science & PolicyArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-954654/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 13 Powered bymore_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2022 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA PUREArticle . 2022 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA DAREArticle . 2022License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022License: CC BYData sources: Pure Utrecht UniversityWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsMitigation and Adaptation Strategies for Global ChangeArticle . 2022Environmental Science & PolicyArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-954654/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:EC | INNOPATHSEC| INNOPATHSAuthors: Roland Cunha Montenegro; Panagiotis Fragkos; Audrey Helen Dobbins; Dorothea Schmid; +2 AuthorsRoland Cunha Montenegro; Panagiotis Fragkos; Audrey Helen Dobbins; Dorothea Schmid; Steve Pye; Ulrich Fahl;Since the signing of the 2030 Agenda for Sustainable Development by the United Nations Member States and the Yellow vest movement, it is clear that emission‐reducing policies should consider their distributional impacts to ensure a sustainable and equitable growth compatible with the Paris Agreement goals. To this end, the design of environmental and energy policies should be accompanied by an interdisciplinary analysis that includes potential effects on distinct groups of society (defined by income, age, or location), regions, and sectors. This work synthesizes common modeling frameworks used to assess technical, socio‐economic, and environmental aspects in policy analysis and the recent progress to portray distributional impacts in each of them. Furthermore, the main indicators produced by each method are highlighted and a critical review pointing to gaps and limitations that could be addressed by future research is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:EC | INNOPATHSEC| INNOPATHSAuthors: Roland Cunha Montenegro; Panagiotis Fragkos; Audrey Helen Dobbins; Dorothea Schmid; +2 AuthorsRoland Cunha Montenegro; Panagiotis Fragkos; Audrey Helen Dobbins; Dorothea Schmid; Steve Pye; Ulrich Fahl;Since the signing of the 2030 Agenda for Sustainable Development by the United Nations Member States and the Yellow vest movement, it is clear that emission‐reducing policies should consider their distributional impacts to ensure a sustainable and equitable growth compatible with the Paris Agreement goals. To this end, the design of environmental and energy policies should be accompanied by an interdisciplinary analysis that includes potential effects on distinct groups of society (defined by income, age, or location), regions, and sectors. This work synthesizes common modeling frameworks used to assess technical, socio‐economic, and environmental aspects in policy analysis and the recent progress to portray distributional impacts in each of them. Furthermore, the main indicators produced by each method are highlighted and a critical review pointing to gaps and limitations that could be addressed by future research is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Institute of Mathematical Sciences (AIMS) Funded by:EC | NAVIGATE, EC | WHYEC| NAVIGATE ,EC| WHYAuthors: Panagiotis Fragkos;<abstract> <p>The Paris Agreement goals require a rapid and deep reduction in global greenhouse gas emissions. Recent studies have shown the large potential of circular economy to reduce global emissions by improving resource and material efficiency practices. However, most large-scale energy system and Integrated Assessment Models used for mitigation analysis typically ignore or do not adequately represent circular economy measures. This study aims to fill in this research gap by enhancing a leading global energy system model with a representation of energy efficiency and circular economy considerations. The scenario-based analysis offers an improved understanding of the potentials, costs and impacts of circular economy in the decarbonisation context. The study shows that enhanced energy efficiency and increased material circularity can reduce energy consumption in all sectors, but most importantly in the industrial sector. They can also reduce the required carbon price to achieve Paris goals and the dependence on expensive, immature, and risky technologies, like Carbon Capture and Storage. Circular economy measures should be properly integrated with broad climate policies to provide a holistic and self-consistent framework to deeply reduce carbon emissions.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2022011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2022011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Institute of Mathematical Sciences (AIMS) Funded by:EC | NAVIGATE, EC | WHYEC| NAVIGATE ,EC| WHYAuthors: Panagiotis Fragkos;<abstract> <p>The Paris Agreement goals require a rapid and deep reduction in global greenhouse gas emissions. Recent studies have shown the large potential of circular economy to reduce global emissions by improving resource and material efficiency practices. However, most large-scale energy system and Integrated Assessment Models used for mitigation analysis typically ignore or do not adequately represent circular economy measures. This study aims to fill in this research gap by enhancing a leading global energy system model with a representation of energy efficiency and circular economy considerations. The scenario-based analysis offers an improved understanding of the potentials, costs and impacts of circular economy in the decarbonisation context. The study shows that enhanced energy efficiency and increased material circularity can reduce energy consumption in all sectors, but most importantly in the industrial sector. They can also reduce the required carbon price to achieve Paris goals and the dependence on expensive, immature, and risky technologies, like Carbon Capture and Storage. Circular economy measures should be properly integrated with broad climate policies to provide a holistic and self-consistent framework to deeply reduce carbon emissions.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2022011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/energy.2022011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Lefevre, Julien; Le Gallic, Thomas; Fragkos, Panagiotis; Mercure, Jean-François; +2 AuthorsLefevre, Julien; Le Gallic, Thomas; Fragkos, Panagiotis; Mercure, Jean-François; Simsek, Yeliz; Paroussos, Leonidas;This paper analyses structural change in the economy as a key but largely unexplored aspect of global socioeconomic and climate change mitigation scenarios. Structural change can actually drive energy and land use as much as economic growth and influence mitigation opportunities and barriers. Conversely, stringent climate policy is bound to induce specific structural and socioeconomic transformations that are still insufficiently understood. We introduce Multi-Sectoral Integrated Assessment Models as main tools to capture the key drivers of structural change and we conduct a multi-model study to assess main structural effectschanges of the sectoral composition and intensity of trade of global and regional economiesin a baseline and 2°C policy scenario by 2050. First, the range of baseline projections across models, for which we identify the main drivers, illustrates the uncertainty on future economic pathways-in emerging economies especially-and inform on plausible alternative futures with implications for energy use and emissions. Second, in all models, climate policy in the 2°C scenario imposes only a second-order impact on the economic structure at the macrosectoral level-agriculture, manufacturing and services-compared to changes modelled in the baseline. However, this hides more radical changes for individual industries-within the energy sector especially. The study, which adopts a top-down framing of global structural change, represents a starting point to kick-start a conversation and propose a new research agenda seeking to improve understanding of the structural change effects in socioeconomic and mitigation scenarios, and better inform policy assessments.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03622209Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2022.102510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03622209Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2022.102510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Lefevre, Julien; Le Gallic, Thomas; Fragkos, Panagiotis; Mercure, Jean-François; +2 AuthorsLefevre, Julien; Le Gallic, Thomas; Fragkos, Panagiotis; Mercure, Jean-François; Simsek, Yeliz; Paroussos, Leonidas;This paper analyses structural change in the economy as a key but largely unexplored aspect of global socioeconomic and climate change mitigation scenarios. Structural change can actually drive energy and land use as much as economic growth and influence mitigation opportunities and barriers. Conversely, stringent climate policy is bound to induce specific structural and socioeconomic transformations that are still insufficiently understood. We introduce Multi-Sectoral Integrated Assessment Models as main tools to capture the key drivers of structural change and we conduct a multi-model study to assess main structural effectschanges of the sectoral composition and intensity of trade of global and regional economiesin a baseline and 2°C policy scenario by 2050. First, the range of baseline projections across models, for which we identify the main drivers, illustrates the uncertainty on future economic pathways-in emerging economies especially-and inform on plausible alternative futures with implications for energy use and emissions. Second, in all models, climate policy in the 2°C scenario imposes only a second-order impact on the economic structure at the macrosectoral level-agriculture, manufacturing and services-compared to changes modelled in the baseline. However, this hides more radical changes for individual industries-within the energy sector especially. The study, which adopts a top-down framing of global structural change, represents a starting point to kick-start a conversation and propose a new research agenda seeking to improve understanding of the structural change effects in socioeconomic and mitigation scenarios, and better inform policy assessments.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03622209Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2022.102510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03622209Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2022.102510&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Theofano Fotiou; Pantelis Capros; Panagiotis Fragkos;doi: 10.3390/en15062233
This paper presents the challenges of increasing the energy efficiency investments in European Union (EU) residential buildings in the context of achieving climate neutrality by 2050. The paper presents the results of the PRIMES buildings model in key energy policy applications to support cost-effective and fair policy making in buildings across Europe. The model covers, in detail, the building sector for all the EU Member States (MS), segmenting the buildings into many categories. The approach proposed includes non-market barriers in conventional microeconomic modelling, which combined with idiosyncratic preferences can capture poor energy efficiency choices and still represent rational behaviours. The model includes a detailed portrayal of policies specific to the sector, comprising economic and regulatory policies as well as institutional measures. The results of the model show that the removal of non-market barriers is of great importance in reducing energy consumption and increasing both the pace and the depth of renovation investment. However, the institutional measures alone are not enough to induce energy efficiency improvement to the scale required to achieve the climate neutrality objectives. Economic (i.e., subsidies) or regulatory measures (i.e., energy performance standards) are also required to decrease emissions and energy consumption in buildings and the paper compares different configurations thereof. The optimum policy mix obviously derives from a compromise among various aims including the cost-effectiveness of the policy budget and the distributional impacts across building and consumer types.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: SygmaSocial Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: SygmaSocial Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Theofano Fotiou; Pantelis Capros; Panagiotis Fragkos;doi: 10.3390/en15062233
This paper presents the challenges of increasing the energy efficiency investments in European Union (EU) residential buildings in the context of achieving climate neutrality by 2050. The paper presents the results of the PRIMES buildings model in key energy policy applications to support cost-effective and fair policy making in buildings across Europe. The model covers, in detail, the building sector for all the EU Member States (MS), segmenting the buildings into many categories. The approach proposed includes non-market barriers in conventional microeconomic modelling, which combined with idiosyncratic preferences can capture poor energy efficiency choices and still represent rational behaviours. The model includes a detailed portrayal of policies specific to the sector, comprising economic and regulatory policies as well as institutional measures. The results of the model show that the removal of non-market barriers is of great importance in reducing energy consumption and increasing both the pace and the depth of renovation investment. However, the institutional measures alone are not enough to induce energy efficiency improvement to the scale required to achieve the climate neutrality objectives. Economic (i.e., subsidies) or regulatory measures (i.e., energy performance standards) are also required to decrease emissions and energy consumption in buildings and the paper compares different configurations thereof. The optimum policy mix obviously derives from a compromise among various aims including the cost-effectiveness of the policy budget and the distributional impacts across building and consumer types.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: SygmaSocial Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/6/2233/pdfData sources: SygmaSocial Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 France, United Kingdom, Germany, Netherlands, Austria, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | PRISMA, EC | iDODDLE, EC | NAVIGATEEC| PRISMA ,EC| iDODDLE ,EC| NAVIGATEvan Heerden, Rik; Edelenbosch, Oreane; Daioglou, Vassilis; Le Gallic, Thomas; Baptista, Luiz; Di Bella, Alice; Colelli, Francesco; Emmerling, Johannes; Fragkos, Panagiotis; Hasse, Robin; Hoppe, Johanna; Kishimoto, Paul; Leblanc, Florian; Lefèvre, Julien; Luderer, Gunnar; Marangoni, Giacomo; Mastrucci, Alessio; Pettifor, Hazel; Pietzcker, Robert; Rochedo, Pedro; van Ruijven, Bas; Schaeffer, Roberto; Wilson, Charlie; Yeh, Sonia; Zisarou, Eleftheria; van Vuuren, Detlef;Abstract Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 France, United Kingdom, Germany, Netherlands, Austria, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | PRISMA, EC | iDODDLE, EC | NAVIGATEEC| PRISMA ,EC| iDODDLE ,EC| NAVIGATEvan Heerden, Rik; Edelenbosch, Oreane; Daioglou, Vassilis; Le Gallic, Thomas; Baptista, Luiz; Di Bella, Alice; Colelli, Francesco; Emmerling, Johannes; Fragkos, Panagiotis; Hasse, Robin; Hoppe, Johanna; Kishimoto, Paul; Leblanc, Florian; Lefèvre, Julien; Luderer, Gunnar; Marangoni, Giacomo; Mastrucci, Alessio; Pettifor, Hazel; Pietzcker, Robert; Rochedo, Pedro; van Ruijven, Bas; Schaeffer, Roberto; Wilson, Charlie; Yeh, Sonia; Zisarou, Eleftheria; van Vuuren, Detlef;Abstract Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | GREEN-WINEC| GREEN-WINLeonidas Paroussos; Antoine Mandel; Kostas Fragkiadakis; Panagiotis Fragkos; Jochen Hinkel; Zoi Vrontisi;The Paris agreement has provided a new framework for climate policy. Complementary forms of international collaboration, such as climate clubs, are probably necessary to foster and mainstream the process of gradual and voluntary increase in nationally determined contributions. We provide a quantitative macro-economic assessment of the costs and benefits that would be associated with different climate club architectures. We find that the key benefits that could structure the club are enhanced technological diffusion and the provision of low-cost climate finance, which reduce investment costs and also enables developing countries to take full advantage of technological diffusion. Although they face the highest absolute mitigation cost, China and India are the largest relative winners from club participation because the burden faced by these countries to finance their energy transition can be massively reduced following their participation in the club. Achieving the Paris Agreement goals may require complementary institutions such as climate clubs. Enhanced technological diffusion and the provision of low-cost climate finance are shown to support the creation of climate coalitions.
Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Paris 1 Panthéon-Sorbonne: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0501-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Paris 1 Panthéon-Sorbonne: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0501-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | GREEN-WINEC| GREEN-WINLeonidas Paroussos; Antoine Mandel; Kostas Fragkiadakis; Panagiotis Fragkos; Jochen Hinkel; Zoi Vrontisi;The Paris agreement has provided a new framework for climate policy. Complementary forms of international collaboration, such as climate clubs, are probably necessary to foster and mainstream the process of gradual and voluntary increase in nationally determined contributions. We provide a quantitative macro-economic assessment of the costs and benefits that would be associated with different climate club architectures. We find that the key benefits that could structure the club are enhanced technological diffusion and the provision of low-cost climate finance, which reduce investment costs and also enables developing countries to take full advantage of technological diffusion. Although they face the highest absolute mitigation cost, China and India are the largest relative winners from club participation because the burden faced by these countries to finance their energy transition can be massively reduced following their participation in the club. Achieving the Paris Agreement goals may require complementary institutions such as climate clubs. Enhanced technological diffusion and the provision of low-cost climate finance are shown to support the creation of climate coalitions.
Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Paris 1 Panthéon-Sorbonne: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0501-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université Paris 1 Panthéon-Sorbonne: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0501-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:EC | NDC ASPECTS, EC | NAVIGATEEC| NDC ASPECTS ,EC| NAVIGATEAuthors: Rochedo, Pedro R. R.; Fragkos, Panagiotis; Garaffa, Rafael; Couto, Lilia Caiado; +4 AuthorsRochedo, Pedro R. R.; Fragkos, Panagiotis; Garaffa, Rafael; Couto, Lilia Caiado; Baptista, Luiz Bernardo; Cunha, Bruno S. L.; Schaeffer, Roberto; Szklo, Alexandre;doi: 10.3390/en14175567
Emissions pathways after COVID-19 will be shaped by how governments’ economic responses translate into infrastructure expansion, energy use, investment planning and societal changes. As a response to the COVID-19 crisis, most governments worldwide launched recovery packages aiming to boost their economies, support employment and enhance their competitiveness. Climate action is pledged to be embedded in most of these packages, but with sharp differences across countries. This paper provides novel evidence on the energy system and greenhouse gas (GHG) emissions implications of post-COVID-19 recovery packages by assessing the gap between pledged recovery packages and the actual investment needs of the energy transition to reach the Paris Agreement goals. Using two well-established Integrated Assessment Models (IAMs) and analysing various scenarios combining recovery packages and climate policies, we conclude that currently planned recovery from COVID-19 is not enough to enhance societal responses to climate urgency and that it should be significantly upscaled and prolonged to ensure compatibility with the Paris Agreement goals.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5567/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5567/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:EC | NDC ASPECTS, EC | NAVIGATEEC| NDC ASPECTS ,EC| NAVIGATEAuthors: Rochedo, Pedro R. R.; Fragkos, Panagiotis; Garaffa, Rafael; Couto, Lilia Caiado; +4 AuthorsRochedo, Pedro R. R.; Fragkos, Panagiotis; Garaffa, Rafael; Couto, Lilia Caiado; Baptista, Luiz Bernardo; Cunha, Bruno S. L.; Schaeffer, Roberto; Szklo, Alexandre;doi: 10.3390/en14175567
Emissions pathways after COVID-19 will be shaped by how governments’ economic responses translate into infrastructure expansion, energy use, investment planning and societal changes. As a response to the COVID-19 crisis, most governments worldwide launched recovery packages aiming to boost their economies, support employment and enhance their competitiveness. Climate action is pledged to be embedded in most of these packages, but with sharp differences across countries. This paper provides novel evidence on the energy system and greenhouse gas (GHG) emissions implications of post-COVID-19 recovery packages by assessing the gap between pledged recovery packages and the actual investment needs of the energy transition to reach the Paris Agreement goals. Using two well-established Integrated Assessment Models (IAMs) and analysing various scenarios combining recovery packages and climate policies, we conclude that currently planned recovery from COVID-19 is not enough to enhance societal responses to climate urgency and that it should be significantly upscaled and prolonged to ensure compatibility with the Paris Agreement goals.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5567/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5567/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175567&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | NDC ASPECTS, EC | NAVIGATEEC| NDC ASPECTS ,EC| NAVIGATEAuthors: Fragkos, Panagiotis;The Paris Agreement has set out ambitious climate goals aiming to keep global warming well-below 2 °C by 2100. This requires a large-scale transformation of the global energy system based on the uptake of several technological options to reduce drastically emissions, including expansion of renewable energy, energy efficiency improvements, and fuel switch towards low-carbon energy carriers. The current study explores the role of Carbon Capture and Storage (CCS) as a mitigation option, which provides a dispatchable source for carbon-free production of electricity and can also be used to decarbonise industrial processes. In the last decade, limited technology progress and slow deployment of CCS technologies worldwide have increased the concerns about the feasibility and potential for massive scale-up of CCS required for deep decarbonisation. The current study uses the state-of-the-art PROMETHEUS global energy demand and supply system model to examine the role and impacts of CCS deployment in a global decarbonisation context. By developing contrasted decarbonisation scenarios, the analysis illustrates that CCS deployment might bring about various economic and climate benefits for developing economies, in the form of reduced emissions, lower mitigation costs, ensuring the cost efficient integration of renewables, limiting stranded fossil fuel assets, and alleviating the negative distributional impacts of cost-optimal policies for developing economies.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 31 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | NDC ASPECTS, EC | NAVIGATEEC| NDC ASPECTS ,EC| NAVIGATEAuthors: Fragkos, Panagiotis;The Paris Agreement has set out ambitious climate goals aiming to keep global warming well-below 2 °C by 2100. This requires a large-scale transformation of the global energy system based on the uptake of several technological options to reduce drastically emissions, including expansion of renewable energy, energy efficiency improvements, and fuel switch towards low-carbon energy carriers. The current study explores the role of Carbon Capture and Storage (CCS) as a mitigation option, which provides a dispatchable source for carbon-free production of electricity and can also be used to decarbonise industrial processes. In the last decade, limited technology progress and slow deployment of CCS technologies worldwide have increased the concerns about the feasibility and potential for massive scale-up of CCS required for deep decarbonisation. The current study uses the state-of-the-art PROMETHEUS global energy demand and supply system model to examine the role and impacts of CCS deployment in a global decarbonisation context. By developing contrasted decarbonisation scenarios, the analysis illustrates that CCS deployment might bring about various economic and climate benefits for developing economies, in the form of reduced emissions, lower mitigation costs, ensuring the cost efficient integration of renewables, limiting stranded fossil fuel assets, and alleviating the negative distributional impacts of cost-optimal policies for developing economies.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 31 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/7/1879/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Funded by:EC | WHYEC| WHYAuthors: Panagiotis Fragkos; Francesco Dalla Longa; Eleftheria Zisarou; Bob van der Zwaan; +2 AuthorsPanagiotis Fragkos; Francesco Dalla Longa; Eleftheria Zisarou; Bob van der Zwaan; Anastasis Giannousakis; Amir Fattahi;This study provides a quantitative analysis of future energy–climate developments at the global level using two well-established integrated assessment models (IAMs), PROMETHEUS and TIAM-ECN. The research aims to explore the results of these IAMs and identify avenues for improvement to achieve the goals of the Paris Agreement. The study focuses on the effects of varying assumptions for key model drivers, including carbon prices, technology costs, and global energy prices, within the context of stringent decarbonization policies. Diagnostic scenarios are utilized to assess the behavior of the models under varying exogenous assumptions for key drivers, aiming to verify the accuracy and reliability of the models and identify areas for optimization. The findings of this research demonstrate that both PROMETHEUS and TIAM-ECN exhibit similar responses to carbon pricing, with PROMETHEUS being more sensitive to this parameter than TIAM-ECN. The results highlight the importance of carbon pricing as an effective policy tool to drive decarbonization efforts. Additionally, the study reveals that variations in technology costs and global energy prices significantly impact the outcomes of the models. The identified sensitivities and responses of the IAMs to key model drivers offer guidance for policymakers to refine their policy decisions and develop effective strategies aligned with the objectives of the Paris Agreement. By understanding the behavior of the models under different assumptions, policymakers can make informed decisions to optimize decarbonization pathways and enhance the likelihood of meeting global climate goals.
Energies arrow_drop_down EnergiesArticle . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesArticle . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:MDPI AG Funded by:EC | WHYEC| WHYAuthors: Panagiotis Fragkos; Francesco Dalla Longa; Eleftheria Zisarou; Bob van der Zwaan; +2 AuthorsPanagiotis Fragkos; Francesco Dalla Longa; Eleftheria Zisarou; Bob van der Zwaan; Anastasis Giannousakis; Amir Fattahi;This study provides a quantitative analysis of future energy–climate developments at the global level using two well-established integrated assessment models (IAMs), PROMETHEUS and TIAM-ECN. The research aims to explore the results of these IAMs and identify avenues for improvement to achieve the goals of the Paris Agreement. The study focuses on the effects of varying assumptions for key model drivers, including carbon prices, technology costs, and global energy prices, within the context of stringent decarbonization policies. Diagnostic scenarios are utilized to assess the behavior of the models under varying exogenous assumptions for key drivers, aiming to verify the accuracy and reliability of the models and identify areas for optimization. The findings of this research demonstrate that both PROMETHEUS and TIAM-ECN exhibit similar responses to carbon pricing, with PROMETHEUS being more sensitive to this parameter than TIAM-ECN. The results highlight the importance of carbon pricing as an effective policy tool to drive decarbonization efforts. Additionally, the study reveals that variations in technology costs and global energy prices significantly impact the outcomes of the models. The identified sensitivities and responses of the IAMs to key model drivers offer guidance for policymakers to refine their policy decisions and develop effective strategies aligned with the objectives of the Paris Agreement. By understanding the behavior of the models under different assumptions, policymakers can make informed decisions to optimize decarbonization pathways and enhance the likelihood of meeting global climate goals.
Energies arrow_drop_down EnergiesArticle . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesArticle . 2023License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | ENGAGE, EC | NAVIGATEEC| ENGAGE ,EC| NAVIGATEAuthors: Michel G. J. den Elzen; Ioannis Dafnomilis; Nicklas Forsell; Panagiotis Fragkos; +7 AuthorsMichel G. J. den Elzen; Ioannis Dafnomilis; Nicklas Forsell; Panagiotis Fragkos; Kostas Fragkiadakis; Niklas Höhne; Takeshi Kuramochi; Leonardo Nascimento; Mark Roelfsema; Heleen van Soest; Frank Sperling;pmid: 35755269
pmc: PMC9209833
Abstract By September 2021, 120 countries had submitted new or updated Nationally Determined Contributions (NDCs) to the UNFCCC in the context of the Paris Agreement. This study analyses the greenhouse gas (GHG) emissions and macroeconomic impacts of the new NDCs. The total impact of the updated NDCs of these countries on global emission levels by 2030 is an additional reduction of about 3.7 GtCO2e, compared to the previously submitted NDCs. This increases to about 4.1 GtCO2e, if also the lower projected emissions of the other countries are included. However, this total reduction needs to be four times greater to be consistent with keeping global temperature increase to well below 2 °C, and even eight times greater for 1.5 °C. Seven G20 economies have pledged stronger emission reduction targets for 2030 in their updated NDCs, leading to additional aggregated GHG emission reductions of about 3.1 GtCO2e, compared to those in the previous NDCs. The socio-economic impacts of the updated NDCs are limited in major economies, while structural shifts occur away from fossil fuel supply sectors and towards renewable electricity. However, two G20 economies have submitted new targets that will lead to an increase in emissions of about 0.3 GtCO2e, compared to their previous NDCs. The updated NDCs of non-G20 economies contain further net reductions. We conclude that countries should strongly increase the ambition levels of their updated NDC submissions to keep the climate goals of the Paris Agreement within reach.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2022 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA PUREArticle . 2022 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA DAREArticle . 2022License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022License: CC BYData sources: Pure Utrecht UniversityWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsMitigation and Adaptation Strategies for Global ChangeArticle . 2022Environmental Science & PolicyArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-954654/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 13 Powered bymore_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2022 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA PUREArticle . 2022 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA DAREArticle . 2022License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022License: CC BYData sources: Pure Utrecht UniversityWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsMitigation and Adaptation Strategies for Global ChangeArticle . 2022Environmental Science & PolicyArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-954654/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | ENGAGE, EC | NAVIGATEEC| ENGAGE ,EC| NAVIGATEAuthors: Michel G. J. den Elzen; Ioannis Dafnomilis; Nicklas Forsell; Panagiotis Fragkos; +7 AuthorsMichel G. J. den Elzen; Ioannis Dafnomilis; Nicklas Forsell; Panagiotis Fragkos; Kostas Fragkiadakis; Niklas Höhne; Takeshi Kuramochi; Leonardo Nascimento; Mark Roelfsema; Heleen van Soest; Frank Sperling;pmid: 35755269
pmc: PMC9209833
Abstract By September 2021, 120 countries had submitted new or updated Nationally Determined Contributions (NDCs) to the UNFCCC in the context of the Paris Agreement. This study analyses the greenhouse gas (GHG) emissions and macroeconomic impacts of the new NDCs. The total impact of the updated NDCs of these countries on global emission levels by 2030 is an additional reduction of about 3.7 GtCO2e, compared to the previously submitted NDCs. This increases to about 4.1 GtCO2e, if also the lower projected emissions of the other countries are included. However, this total reduction needs to be four times greater to be consistent with keeping global temperature increase to well below 2 °C, and even eight times greater for 1.5 °C. Seven G20 economies have pledged stronger emission reduction targets for 2030 in their updated NDCs, leading to additional aggregated GHG emission reductions of about 3.1 GtCO2e, compared to those in the previous NDCs. The socio-economic impacts of the updated NDCs are limited in major economies, while structural shifts occur away from fossil fuel supply sectors and towards renewable electricity. However, two G20 economies have submitted new targets that will lead to an increase in emissions of about 0.3 GtCO2e, compared to their previous NDCs. The updated NDCs of non-G20 economies contain further net reductions. We conclude that countries should strongly increase the ambition levels of their updated NDC submissions to keep the climate goals of the Paris Agreement within reach.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2022 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA PUREArticle . 2022 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA DAREArticle . 2022License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022License: CC BYData sources: Pure Utrecht UniversityWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsMitigation and Adaptation Strategies for Global ChangeArticle . 2022Environmental Science & PolicyArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-954654/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 13 Powered bymore_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2022 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA PUREArticle . 2022 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: IIASA PUREIIASA DAREArticle . 2022License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/18093/1/Elzen2022_Article_UpdatedNationallyDeterminedCon.pdfData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticle . 2022License: CC BYData sources: Pure Utrecht UniversityWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsMitigation and Adaptation Strategies for Global ChangeArticle . 2022Environmental Science & PolicyArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalMitigation and Adaptation Strategies for Global ChangeArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-954654/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu