- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Annual Reviews Yuanyuan Xu; Yuanyuan Xu; Wiley Evans; Jan Newton; Nina Bednaršek; Greg Pelletier; Dana Greeley; Jeremy M. Testa; Ming Li; Wei-Jun Cai; Simone R. Alin; Anise Ahmed; Richard A. Feely;pmid: 32956015
Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including coastal upwelling, river–ocean mixing, air–water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 ( pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries—Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-010419-011004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-010419-011004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Association for the Advancement of Science (AAAS) Jianfang Chen; Haisheng Zhang; Baoshan Chen; Xinping Hu; Liqi Chen; Kevin F. Sullivan; Kevin F. Sullivan; Akihiko Murata; Denis Pierrot; Denis Pierrot; Wei-Jen Huang; Yuanhui Zhang; Yongchen Wang; Suqing Xu; E. Peter Jones; Zhongyong Gao; Jacqueline M. Grebmeier; Wei-Jun Cai; Sang Heon Lee;pmid: 20651119
Sinking in Slowly As the Arctic warms and its sea ice continues to melt, more of the ocean surface will be exposed, creating the potential for greater uptake of carbon dioxide from the atmosphere. Cai et al. (p. 556 , published online 22 July) present results from a series of Arctic Ocean transects that show that the amount of CO 2 in the surface waters has increased greatly recently. This will act as a barrier to future CO 2 uptake and suggests that the Arctic Ocean will not become the large CO 2 sink that some have predicted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1189338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu229 citations 229 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1189338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for the Advancement of Science (AAAS) Di Qi; Zhangxian Ouyang; Liqi Chen; Yingxu Wu; Ruibo Lei; Baoshan Chen; Richard A. Feely; Leif G. Anderson; Wenli Zhong; Hongmei Lin; Alexander Polukhin; Yixing Zhang; Yongli Zhang; Haibo Bi; Xinyu Lin; Yiming Luo; Yanpei Zhuang; Jianfeng He; Jianfang Chen; Wei-Jun Cai;pmid: 36173841
The Arctic Ocean has experienced rapid warming and sea ice loss in recent decades, becoming the first open-ocean basin to experience widespread aragonite undersaturation [saturation state of aragonite (Ω arag ) < 1]. However, its trend toward long-term ocean acidification and the underlying mechanisms remain undocumented. Here, we report rapid acidification there, with rates three to four times higher than in other ocean basins, and attribute it to changing sea ice coverage on a decadal time scale. Sea ice melt exposes seawater to the atmosphere and promotes rapid uptake of atmospheric carbon dioxide, lowering its alkalinity and buffer capacity and thus leading to sharp declines in pH and Ω arag . We predict a further decrease in pH, particularly at higher latitudes where sea ice retreat is active, whereas Arctic warming may counteract decreases in Ω arag in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo0383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo0383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2014Publisher:PANGAEA Funded by:NSF | Collaborative Research - ..., NSF | Collaborative Research - ..., NSF | Collaborative Research - ...NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and Calcification ,NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and Calcification ,NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and CalcificationSchoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H;Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-07-08. Supplement to: Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H (2013): Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures. PLoS ONE, 8(10), e75049
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.833874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.833874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Yanpei Zhuang; Haiyan Jin; Wei-Jun Cai; Hongliang Li; Meibing Jin; Di Qi; Jianfang Chen;Abstract Rapid warming and sea-ice loss in the Arctic Ocean are among the most profound climatic changes to have occurred in recent decades on Earth. Arctic Ocean biological production appears that it may be increasing as a result, but the consequences for nutrient concentrations are unknown. We have assembled a collection of historical field data showing that average concentrations of the macronutrients nitrate and phosphate have decreased by 79% and 29%, respectively, in surface waters of the western Arctic Ocean basin over the past three decades. The field observations and results from numerical ocean simulations suggest that this long-term trend toward more oligotrophic (nutrient-poor) conditions is driven primarily by the compound effects of sea-ice loss: a reduced resupply of nutrients from subsurface waters (due to fresh water addition and stronger upper-ocean stratification) coincident with increased biological consumption of nutrients (due to the greater availability of light needed for photosynthesis).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf58b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf58b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Geophysical Union (AGU) Di Qi; Yingxu Wu; Liqi Chen; Wei‐Jun Cai; Shujie Yu; Zhangxian Ouyang; Yixing Zhang; Leif G. Anderson; Richard A. Feely; Yanpei Zhuang; Hongmei Lin; Ruibo Lei; Haibo Bi;doi: 10.1029/2024gl109986
AbstractThe acidification of coastal waters is distinguished from the open ocean because of much stronger synergistic effects between anthropogenic forcing and local biogeochemical processes. However, ocean acidification research is still rather limited in polar coastal oceans. Here, we present a 16 year (2002–2018) observational dataset in the Chukchi Sea during the rapid sea‐ice melting season to determine the long‐term changes in pH and aragonite saturation state (Ωarag). We found that pH and Ωarag significantly declined in the water column with average rates of −0.0095 ± 0.0027 years−1 and −0.0333 ± 0.0098 years−1, respectively, and are 4–6 times faster than those solely due to increasing atmospheric CO2. We attributed the rapid acidification to the increased dissolved inorganic carbon owing to a combination of ice melt‐induced increased atmospheric CO2 invasion and subsurface remineralization induced by a stronger surface biological production as a result of the increased inflow of the nutrient‐rich Pacific water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl109986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl109986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 MexicoPublisher:Frontiers Media SA Hongjie Wang; Hongjie Wang; Li-Qing Jiang; Zhaohui Aleck Wang; Xinping Hu; Dwight K. Gledhill; Daniela Turk; Daniela Turk; Wei-Jun Cai;handle: 1912/24083 , 1969.6/89414
Time of Emergence (ToE) is the time when a signal emerges from the noise of natural variability. Commonly used in climate science for the detection of anthropogenic forcing, this concept has recently been applied to geochemical variables, to assess the emerging times of anthropogenic ocean acidification (OA), mostly in the open ocean using global climate and Earth System Models. Yet studies of OA variables are scarce within costal margins, due to limited multidecadal time-series observations of carbon parameters. ToE provides important information for decision making regarding the strategic configuration of observing assets, to ensure they are optimally positioned either for signal detection and/or process elicitation and to identify the most suitable variables in discerning OA-related changes. Herein, we present a short overview of ToE estimates on an OA variable, CO2 fugacity f(CO2,sw), in the North American ocean margins, using coastal data from the Surface Ocean CO2 Atlas (SOCAT) V5. ToE suggests an average theoretical timeframe for an OA signal to emerge, of 23(±13) years, but with considerable spatial variability. Most coastal areas are experiencing additional secular and/or multi-decadal forcing(s) that modifies the OA signal, and such forcing may not be sufficiently resolved by current observations. We provide recommendations, which will help scientists and decision makers design and implement OA monitoring systems in the next decade, to address the objectives of OceanObs19 (http://www.oceanobs19.net) in support of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) (https://en.unesco.org/ocean-decade) and the Sustainable Development Goal (SDG) 14.3 (https://sustainabledevelopment.un.org/sdg14) target to “Minimize and address the impacts of OA.”
Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00091Data sources: Bielefeld Academic Search Engine (BASE)Texas A&M University - Corpus Christi: DSpace RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00091Data sources: Bielefeld Academic Search Engine (BASE)Texas A&M University - Corpus Christi: DSpace RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Informa UK Limited Authors: S. Fisher Gonski (11259238); Micah J. Horwith (11259241); Skip Albertson (11259244); Julia Bos (411731); +9 AuthorsS. Fisher Gonski (11259238); Micah J. Horwith (11259241); Skip Albertson (11259244); Julia Bos (411731); Allison S. Brownlee (11259247); Natalie Coleman (7206680); Carol Falkenhayn Maloy (11259250); Mya Keyzers (8220738); Christopher Krembs (8220735); Greg Pelletier (8220747); Elisa Rauschl (11259253); Holly R. Young (11259256); Wei-Jun Cai (469671);The Washington State Department of Ecology conducted a large-scale ocean acidification (OA) study in greater Puget Sound to: (1) produce a marine carbon dioxide (CO2) system dataset capable of distinguishing between long-term anthropogenic changes and natural variability, (2) characterize how rivers and freshwater drive OA conditions in the region, and (3) understand the relative influence of cumulative anthropogenic forcing on regional OA conditions. Marine CO2 system data were collected monthly at 20 stations between October 2018 and February 2020. While additional data are still needed, the climate-level data collected thus far have uncovered novel insights into spatiotemporal distributions of and variability in the regional marine CO2 system, especially at low salinities in shallow, river-forced shelf regions. The data provide a strong foundation with which to continue monitoring OA conditions across the region. More importantly, this work represents the first successful long-term OA monitoring program undertaken at the state-level by a regulatory agency. Therefore, we offer the work described herein as a blueprint to help state and local scientists and environmental and natural resource managers develop, implement, and conduct long-term OA monitoring programs and studies in their own contexts and jurisdictions.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/08920753.2021.1947130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/08920753.2021.1947130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 MexicoPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research - ..., NSF | Collaborative Research - ..., NSF | Collaborative Research - ...NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and Calcification ,NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and Calcification ,NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and CalcificationSchoepf, Verena; Grottoli, Andréa G.; Warner, Mark E.; Cai, Wei-Jun; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yongchen; Matsui, Yohei; Baumann, Justin H.;Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0 °C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.
PLoS ONE arrow_drop_down Texas A&M University - Corpus Christi: DSpace RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Texas A&M University - Corpus Christi: DSpace RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Geophysical Union (AGU) Zong‐Pei Jiang; Cao Qin; Yiwen Pan; Chengfeng Le; Nancy Rabalais; Robert Eugene Turner; Katja Fennel; Kui Wang; Wei‐Jun Cai;doi: 10.1029/2023gl106300
AbstractCoastal waters often experience enhanced ocean acidification due to the combined effects of climate change and regional biological and anthropogenic activities. Through reconstructing summertime bottom pH in the northern Gulf of Mexico from 1986 to 2019, we demonstrated that eutrophication‐fueled respiration dominated bottom pH changes on intra‐seasonal and interannual timescales, resulting in recurring acidification coinciding with hypoxia. However, the multi‐decadal acidification trend was principally driven by rising atmospheric CO2 and ocean warming, with more acidified and less buffered hypoxic waters exhibiting a higher rate of pH decline (−0.0023 yr−1) compared to non‐hypoxic waters (−0.0014 yr−1). The cumulative effect of climate‐driven decrease in pH baseline is projected to become more significant over time, while the potential eutrophication‐induced seasonal exacerbation of acidification may lessen with decreasing oxygen availability resulting from ocean warming. Mitigating coastal acidification requires both global reduction in CO2 emissions and regional management of riverine nutrient loads.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Annual Reviews Yuanyuan Xu; Yuanyuan Xu; Wiley Evans; Jan Newton; Nina Bednaršek; Greg Pelletier; Dana Greeley; Jeremy M. Testa; Ming Li; Wei-Jun Cai; Simone R. Alin; Anise Ahmed; Richard A. Feely;pmid: 32956015
Oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO2-induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including coastal upwelling, river–ocean mixing, air–water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO3) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO2 ( pCO2), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries—Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-010419-011004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-marine-010419-011004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Association for the Advancement of Science (AAAS) Jianfang Chen; Haisheng Zhang; Baoshan Chen; Xinping Hu; Liqi Chen; Kevin F. Sullivan; Kevin F. Sullivan; Akihiko Murata; Denis Pierrot; Denis Pierrot; Wei-Jen Huang; Yuanhui Zhang; Yongchen Wang; Suqing Xu; E. Peter Jones; Zhongyong Gao; Jacqueline M. Grebmeier; Wei-Jun Cai; Sang Heon Lee;pmid: 20651119
Sinking in Slowly As the Arctic warms and its sea ice continues to melt, more of the ocean surface will be exposed, creating the potential for greater uptake of carbon dioxide from the atmosphere. Cai et al. (p. 556 , published online 22 July) present results from a series of Arctic Ocean transects that show that the amount of CO 2 in the surface waters has increased greatly recently. This will act as a barrier to future CO 2 uptake and suggests that the Arctic Ocean will not become the large CO 2 sink that some have predicted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1189338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu229 citations 229 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1189338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for the Advancement of Science (AAAS) Di Qi; Zhangxian Ouyang; Liqi Chen; Yingxu Wu; Ruibo Lei; Baoshan Chen; Richard A. Feely; Leif G. Anderson; Wenli Zhong; Hongmei Lin; Alexander Polukhin; Yixing Zhang; Yongli Zhang; Haibo Bi; Xinyu Lin; Yiming Luo; Yanpei Zhuang; Jianfeng He; Jianfang Chen; Wei-Jun Cai;pmid: 36173841
The Arctic Ocean has experienced rapid warming and sea ice loss in recent decades, becoming the first open-ocean basin to experience widespread aragonite undersaturation [saturation state of aragonite (Ω arag ) < 1]. However, its trend toward long-term ocean acidification and the underlying mechanisms remain undocumented. Here, we report rapid acidification there, with rates three to four times higher than in other ocean basins, and attribute it to changing sea ice coverage on a decadal time scale. Sea ice melt exposes seawater to the atmosphere and promotes rapid uptake of atmospheric carbon dioxide, lowering its alkalinity and buffer capacity and thus leading to sharp declines in pH and Ω arag . We predict a further decrease in pH, particularly at higher latitudes where sea ice retreat is active, whereas Arctic warming may counteract decreases in Ω arag in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo0383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abo0383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2014Publisher:PANGAEA Funded by:NSF | Collaborative Research - ..., NSF | Collaborative Research - ..., NSF | Collaborative Research - ...NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and Calcification ,NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and Calcification ,NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and CalcificationSchoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H;Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-07-08. Supplement to: Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H (2013): Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures. PLoS ONE, 8(10), e75049
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.833874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.833874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Yanpei Zhuang; Haiyan Jin; Wei-Jun Cai; Hongliang Li; Meibing Jin; Di Qi; Jianfang Chen;Abstract Rapid warming and sea-ice loss in the Arctic Ocean are among the most profound climatic changes to have occurred in recent decades on Earth. Arctic Ocean biological production appears that it may be increasing as a result, but the consequences for nutrient concentrations are unknown. We have assembled a collection of historical field data showing that average concentrations of the macronutrients nitrate and phosphate have decreased by 79% and 29%, respectively, in surface waters of the western Arctic Ocean basin over the past three decades. The field observations and results from numerical ocean simulations suggest that this long-term trend toward more oligotrophic (nutrient-poor) conditions is driven primarily by the compound effects of sea-ice loss: a reduced resupply of nutrients from subsurface waters (due to fresh water addition and stronger upper-ocean stratification) coincident with increased biological consumption of nutrients (due to the greater availability of light needed for photosynthesis).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf58b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf58b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Geophysical Union (AGU) Di Qi; Yingxu Wu; Liqi Chen; Wei‐Jun Cai; Shujie Yu; Zhangxian Ouyang; Yixing Zhang; Leif G. Anderson; Richard A. Feely; Yanpei Zhuang; Hongmei Lin; Ruibo Lei; Haibo Bi;doi: 10.1029/2024gl109986
AbstractThe acidification of coastal waters is distinguished from the open ocean because of much stronger synergistic effects between anthropogenic forcing and local biogeochemical processes. However, ocean acidification research is still rather limited in polar coastal oceans. Here, we present a 16 year (2002–2018) observational dataset in the Chukchi Sea during the rapid sea‐ice melting season to determine the long‐term changes in pH and aragonite saturation state (Ωarag). We found that pH and Ωarag significantly declined in the water column with average rates of −0.0095 ± 0.0027 years−1 and −0.0333 ± 0.0098 years−1, respectively, and are 4–6 times faster than those solely due to increasing atmospheric CO2. We attributed the rapid acidification to the increased dissolved inorganic carbon owing to a combination of ice melt‐induced increased atmospheric CO2 invasion and subsurface remineralization induced by a stronger surface biological production as a result of the increased inflow of the nutrient‐rich Pacific water.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl109986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024gl109986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 MexicoPublisher:Frontiers Media SA Hongjie Wang; Hongjie Wang; Li-Qing Jiang; Zhaohui Aleck Wang; Xinping Hu; Dwight K. Gledhill; Daniela Turk; Daniela Turk; Wei-Jun Cai;handle: 1912/24083 , 1969.6/89414
Time of Emergence (ToE) is the time when a signal emerges from the noise of natural variability. Commonly used in climate science for the detection of anthropogenic forcing, this concept has recently been applied to geochemical variables, to assess the emerging times of anthropogenic ocean acidification (OA), mostly in the open ocean using global climate and Earth System Models. Yet studies of OA variables are scarce within costal margins, due to limited multidecadal time-series observations of carbon parameters. ToE provides important information for decision making regarding the strategic configuration of observing assets, to ensure they are optimally positioned either for signal detection and/or process elicitation and to identify the most suitable variables in discerning OA-related changes. Herein, we present a short overview of ToE estimates on an OA variable, CO2 fugacity f(CO2,sw), in the North American ocean margins, using coastal data from the Surface Ocean CO2 Atlas (SOCAT) V5. ToE suggests an average theoretical timeframe for an OA signal to emerge, of 23(±13) years, but with considerable spatial variability. Most coastal areas are experiencing additional secular and/or multi-decadal forcing(s) that modifies the OA signal, and such forcing may not be sufficiently resolved by current observations. We provide recommendations, which will help scientists and decision makers design and implement OA monitoring systems in the next decade, to address the objectives of OceanObs19 (http://www.oceanobs19.net) in support of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) (https://en.unesco.org/ocean-decade) and the Sustainable Development Goal (SDG) 14.3 (https://sustainabledevelopment.un.org/sdg14) target to “Minimize and address the impacts of OA.”
Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00091Data sources: Bielefeld Academic Search Engine (BASE)Texas A&M University - Corpus Christi: DSpace RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00091Data sources: Bielefeld Academic Search Engine (BASE)Texas A&M University - Corpus Christi: DSpace RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Informa UK Limited Authors: S. Fisher Gonski (11259238); Micah J. Horwith (11259241); Skip Albertson (11259244); Julia Bos (411731); +9 AuthorsS. Fisher Gonski (11259238); Micah J. Horwith (11259241); Skip Albertson (11259244); Julia Bos (411731); Allison S. Brownlee (11259247); Natalie Coleman (7206680); Carol Falkenhayn Maloy (11259250); Mya Keyzers (8220738); Christopher Krembs (8220735); Greg Pelletier (8220747); Elisa Rauschl (11259253); Holly R. Young (11259256); Wei-Jun Cai (469671);The Washington State Department of Ecology conducted a large-scale ocean acidification (OA) study in greater Puget Sound to: (1) produce a marine carbon dioxide (CO2) system dataset capable of distinguishing between long-term anthropogenic changes and natural variability, (2) characterize how rivers and freshwater drive OA conditions in the region, and (3) understand the relative influence of cumulative anthropogenic forcing on regional OA conditions. Marine CO2 system data were collected monthly at 20 stations between October 2018 and February 2020. While additional data are still needed, the climate-level data collected thus far have uncovered novel insights into spatiotemporal distributions of and variability in the regional marine CO2 system, especially at low salinities in shallow, river-forced shelf regions. The data provide a strong foundation with which to continue monitoring OA conditions across the region. More importantly, this work represents the first successful long-term OA monitoring program undertaken at the state-level by a regulatory agency. Therefore, we offer the work described herein as a blueprint to help state and local scientists and environmental and natural resource managers develop, implement, and conduct long-term OA monitoring programs and studies in their own contexts and jurisdictions.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/08920753.2021.1947130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/08920753.2021.1947130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 MexicoPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research - ..., NSF | Collaborative Research - ..., NSF | Collaborative Research - ...NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and Calcification ,NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and Calcification ,NSF| Collaborative Research - Ocean Acidification Category 1: Interactive Effects of Temperature, Nutrients, and Ocean Acidification on Coral Physiology and CalcificationSchoepf, Verena; Grottoli, Andréa G.; Warner, Mark E.; Cai, Wei-Jun; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yongchen; Matsui, Yohei; Baumann, Justin H.;Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0 °C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.
PLoS ONE arrow_drop_down Texas A&M University - Corpus Christi: DSpace RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Texas A&M University - Corpus Christi: DSpace RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0075049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Geophysical Union (AGU) Zong‐Pei Jiang; Cao Qin; Yiwen Pan; Chengfeng Le; Nancy Rabalais; Robert Eugene Turner; Katja Fennel; Kui Wang; Wei‐Jun Cai;doi: 10.1029/2023gl106300
AbstractCoastal waters often experience enhanced ocean acidification due to the combined effects of climate change and regional biological and anthropogenic activities. Through reconstructing summertime bottom pH in the northern Gulf of Mexico from 1986 to 2019, we demonstrated that eutrophication‐fueled respiration dominated bottom pH changes on intra‐seasonal and interannual timescales, resulting in recurring acidification coinciding with hypoxia. However, the multi‐decadal acidification trend was principally driven by rising atmospheric CO2 and ocean warming, with more acidified and less buffered hypoxic waters exhibiting a higher rate of pH decline (−0.0023 yr−1) compared to non‐hypoxic waters (−0.0014 yr−1). The cumulative effect of climate‐driven decrease in pH baseline is projected to become more significant over time, while the potential eutrophication‐induced seasonal exacerbation of acidification may lessen with decreasing oxygen availability resulting from ocean warming. Mitigating coastal acidification requires both global reduction in CO2 emissions and regional management of riverine nutrient loads.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu