- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:IOP Publishing Funded by:NSERC, SSHRCNSERC ,SSHRCAuthors:D Horen Greenford;
D Horen Greenford
D Horen Greenford in OpenAIRET Crownshaw;
T Crownshaw
T Crownshaw in OpenAIREC Lesk;
C Lesk
C Lesk in OpenAIREK Stadler;
+1 AuthorsK Stadler
K Stadler in OpenAIRED Horen Greenford;
D Horen Greenford
D Horen Greenford in OpenAIRET Crownshaw;
T Crownshaw
T Crownshaw in OpenAIREC Lesk;
C Lesk
C Lesk in OpenAIREK Stadler;
K Stadler
K Stadler in OpenAIREH D Matthews;
H D Matthews
H D Matthews in OpenAIREAbstract The tertiary (or ‘service’) sector is commonly identified as a relatively clean part of the economy. Accordingly, sustainable development policy routinely invokes ‘tertiarization’—a shift from primary and secondary sectors to the tertiary sector—as a means of decoupling economic growth from environmental damages. However, this argument does not account for environmental impacts related to the household consumption of tertiary sector employees. Here we show using a novel analytical framework that when the household consumption of labour is treated as a necessary and endogenous input to production, the environmental impacts of all sectors converge. This shift in perspective also exacerbates existing disparities in the attribution of environmental impact from economic activity among developed and developing economies. Our findings suggest that decoupling of economic activity from environmental impacts is unlikely to be achieved by transitioning to a service-based economy alone, but rather, that reducing environmental damages from economic activity may require fundamental changes to the scale and composition of consumption across all economic sectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab7f63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab7f63&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Funded by:NSERCNSERCAuthors:Antti-Ilari Partanen;
Antti-Ilari Partanen;Antti-Ilari Partanen
Antti-Ilari Partanen in OpenAIREJean-Sébastien Landry;
Jean-Sébastien Landry; +1 AuthorsJean-Sébastien Landry
Jean-Sébastien Landry in OpenAIREAntti-Ilari Partanen;
Antti-Ilari Partanen;Antti-Ilari Partanen
Antti-Ilari Partanen in OpenAIREJean-Sébastien Landry;
Jean-Sébastien Landry;Jean-Sébastien Landry
Jean-Sébastien Landry in OpenAIREH. Damon Matthews;
H. Damon Matthews
H. Damon Matthews in OpenAIREAnthropogenic aerosols have a net cooling effect on climate and also cause adverse health effects by degrading air quality. In this global-scale sensitivity study, we used a combination of the aerosol-climate model ECHAM-HAMMOZ and the University of Victoria Earth System Climate Model to assess the climate and health effects of aerosols emissions from three Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and two new (LOW and HIGH) aerosol emission scenarios derived from RCP4.5, but that span a wider spectrum of possible future aerosol emissions. All simulations had CO _2 emissions and greenhouse gas forcings from RCP4.5. Aerosol forcing declined similarly in the standard RCP aerosol emission scenarios: the aerosol effective radiative forcing (ERF) decreased from −1.3 W m ^−2 in 2005 to between −0.1 W m ^−2 and −0.4 W m ^−2 in 2100. The differences in ERF were substantially larger between LOW (−0.02 W m ^−2 in 2100) and HIGH (−0.8 W m ^−2 ) scenarios. The global mean temperature difference between the simulations with standard RCP aerosol emissions was less than 0.18 °C, whereas the difference between LOW and HIGH reached 0.86 °C in 2061. In LOW, the rate of warming peaked at 0.48 °C per decade in the 2030s, whereas in HIGH it was the lowest of all simulations and never exceeded 0.23 °C per decade. Using present-day population density and baseline mortality rates for all scenarios, PM _2.5 -induced premature mortality was 2 371 800 deaths per year in 2010 and 525 700 in 2100 with RCP4.5 aerosol emissions; in HIGH, the premature mortality reached its maximum value of 2 780 800 deaths per year in 2030, whereas in LOW the premature mortality at 2030 was below 299 900 deaths per year. Our results show potential trade-offs in aerosol mitigation with respect to climate change and public health as ambitious reduction of aerosol emissions considerably increased warming while decreasing mortality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Geophysical Union (AGU) Funded by:SSHRCSSHRCAuthors:Seth Wynes;
Seth Wynes
Seth Wynes in OpenAIREJennifer Garard;
Jennifer Garard
Jennifer Garard in OpenAIREPaola Fajardo;
Midori Aoyagi; +10 AuthorsPaola Fajardo
Paola Fajardo in OpenAIRESeth Wynes;
Seth Wynes
Seth Wynes in OpenAIREJennifer Garard;
Jennifer Garard
Jennifer Garard in OpenAIREPaola Fajardo;
Midori Aoyagi;Paola Fajardo
Paola Fajardo in OpenAIREMelody Burkins;
Kalpana Chaudhari; Terrence Forrester; Matthias Garschagen;Melody Burkins
Melody Burkins in OpenAIREPaul Hudson;
Maria Ivanova; Edward Maibach; Anne‐Sophie Stevance; Sylvia Wood;Paul Hudson
Paul Hudson in OpenAIREDamon Matthews;
Damon Matthews
Damon Matthews in OpenAIREdoi: 10.1029/2022ef002857
AbstractDespite the increased salience of infectious disease risk due to the COVID‐19 pandemic, two recent surveys of the business and scientific communities have found a continued belief in the prominence of environmental risks. In particular, failure to take action on climate change was seen as a highly likely risk whose impacts would become locked‐in barring an immediate global response. These expert opinions are consistent with a growing body of evidence and give us insight into the priorities of global thought leaders who study and respond to risk. Given this alignment in priorities, we argue for the importance of integrating climate and environmental action into responses to emerging threats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022ef002857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022ef002857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Funded by:NSERCNSERCAuthors:Jean‐Sébastien Landry;
Jean‐Sébastien Landry
Jean‐Sébastien Landry in OpenAIREH. Damon Matthews;
H. Damon Matthews
H. Damon Matthews in OpenAIREdoi: 10.1111/gcb.13603
pmid: 27992954
AbstractThe incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate–carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year‐2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11–154), 47 (2–64), and 1129 (90–5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC‐related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming‐induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO2 between 2000 and 2300 for most estimates (by 4–8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO2 (by 1–9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO2 decreases under RCPs 4.5 and 8.5 (by 5–8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO2.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:IOP Publishing Authors: Tanya L. Graham;Trevor J Smith;
Donny Seto; Serge Keverian; +2 AuthorsTrevor J Smith
Trevor J Smith in OpenAIRETanya L. Graham;Trevor J Smith;
Donny Seto; Serge Keverian; Cassandra Lamontagne;Trevor J Smith
Trevor J Smith in OpenAIREH. Damon Matthews;
H. Damon Matthews
H. Damon Matthews in OpenAIREThere is considerable interest in identifying national contributions to global warming as a way of allocating historical responsibility for observed climate change. This task is made difficult by uncertainty associated with national estimates of historical emissions, as well as by difficulty in estimating the climate response to emissions of gases with widely varying atmospheric lifetimes. Here, we present a new estimate of national contributions to observed climate warming, including CO _2 emissions from fossil fuels and land-use change, as well as methane, nitrous oxide and sulfate aerosol emissions While some countries’ warming contributions are reasonably well defined by fossil fuel CO _2 emissions, many countries have dominant contributions from land-use CO _2 and non-CO _2 greenhouse gas emissions, emphasizing the importance of both deforestation and agriculture as components of a country’s contribution to climate warming. Furthermore, because of their short atmospheric lifetime, recent sulfate aerosol emissions have a large impact on a country’s current climate contribution We show also that there are vast disparities in both total and per-capita climate contributions among countries, and that across most developed countries, per-capita contributions are not currently consistent with attempts to restrict global temperature change to less than 2 °C above pre-industrial temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/1/014010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/1/014010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:IOP Publishing Authors:Anders Bjørn;
Anders Bjørn;Anders Bjørn
Anders Bjørn in OpenAIREDamon Matthews;
Damon Matthews
Damon Matthews in OpenAIREShannon M. Lloyd;
+1 AuthorsShannon M. Lloyd
Shannon M. Lloyd in OpenAIREAnders Bjørn;
Anders Bjørn;Anders Bjørn
Anders Bjørn in OpenAIREDamon Matthews;
Damon Matthews
Damon Matthews in OpenAIREShannon M. Lloyd;
Shannon M. Lloyd;Shannon M. Lloyd
Shannon M. Lloyd in OpenAIREAbstract While large companies routinely announce greenhouse gas emissions targets, few have derived targets based on global climate goals. This changed in 2015 with the creation of the science based targets (SBTs) initiative, which provides guidelines for setting emission targets in line with the temperature goal of the Paris Agreement. SBTs have now been set by more than 500 companies. Methods for setting such targets are not presented in a comparable way in target-setting guidelines and concerns that certain methods may lead to overshoot of the temperature goal have not been investigated. Here, we systematically characterize and compare all seven broadly applicable target-setting methods and quantify the balance between collective corporate SBTs and global allowable emissions for individual methods and different method mixes. We use a simplified global production scenario composed of eight archetypical companies to evaluate target-setting methods across a range of company characteristics and global emission scenarios. The methods vary greatly with respect to emission allocation principles, required company variables and embedded global emission scenarios. Some methods treat companies largely the same, while others differentiate between company types based on geography, economic sector, projected growth rate or baseline emission intensity. The application of individual target-setting methods as well as different mixes of methods tend to result in an imbalance between time-integrated aggregated SBTs and global allowable emissions. The sign and size of this imbalance is in some cases sensitive to the shape of the global emission pathway and the distribution of variables between the company archetypes. We recommend that the SBT initiative (a) use our SBT method characterisation to present methods in a systematic way, (b) consider our emission imbalance analysis in its method recommendations, (c) disclose underlying reasons for its method recommendations, and (d) require transparency from companies on the calculation of established SBTs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe57b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abe57b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:IOP Publishing Recent estimates of the global carbon budget, or allowable cumulative CO _2 emissions consistent with a given level of climate warming, have the potential to inform climate mitigation policy discussions aimed at maintaining global temperatures below 2 °C. This raises difficult questions, however, about how best to share this carbon budget amongst nations in a way that both respects the need for a finite cap on total allowable emissions, and also addresses the fundamental disparities amongst nations with respect to their historical and potential future emissions. Here we show how the contraction and convergence (C&C) framework can be applied to the division of a global carbon budget among nations, in a manner that both maintains total emissions below a level consistent with 2 °C, and also adheres to the principle of attaining equal per capita CO _2 emissions within the coming decades. We show further that historical differences in responsibility for climate warming can be quantified via a cumulative carbon debt (or credit), which represents the amount by which a given country’s historical emissions have exceeded (or fallen short of) the emissions that would have been consistent with their share of world population over time. This carbon debt/credit calculation enhances the potential utility of C&C, therefore providing a simple method to frame national climate mitigation targets in a way that both accounts for historical responsibility, and also respects the principle of international equity in determining future emissions allowances.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, GermanyPublisher:Copernicus GmbH Authors: Corey Lesk;Denes Csala;
Denes Csala
Denes Csala in OpenAIRERobin Hasse;
Robin Hasse
Robin Hasse in OpenAIRESgouris Sgouridis;
+5 AuthorsSgouris Sgouridis
Sgouris Sgouridis in OpenAIRECorey Lesk;Denes Csala;
Denes Csala
Denes Csala in OpenAIRERobin Hasse;
Robin Hasse
Robin Hasse in OpenAIRESgouris Sgouridis;
Sgouris Sgouridis
Sgouris Sgouridis in OpenAIREAntoine Levesque;
Antoine Levesque
Antoine Levesque in OpenAIREKatharine J. Mach;
Katharine J. Mach
Katharine J. Mach in OpenAIREDaniel Horen Greenford;
Daniel Horen Greenford
Daniel Horen Greenford in OpenAIREH. Damon Matthews;
Radley M. Horton;H. Damon Matthews
H. Damon Matthews in OpenAIRE<p>Climate change necessitates an immediate and sustained global effort to reduce greenhouse gas emissions while adapting to the increased climate risks caused by historical emissions. This broader climate transition will involve mass global interventions including renewable energy deployment, coastal protection and retreat, and enhanced space cooling, which will result in CO<sub>2</sub> emissions from energy and materials use. Yet, the magnitude of these emissions remains largely unconstrained, leaving open the potential for under-accounting of emissions and conflicts or synergies between mitigation and adaptation goals. Here, we use a suite of models to estimate the CO<sub>2</sub> emissions embedded in the broader climate transition. For a pathway limiting warming to 2&#176;C, we estimate that selected adaptations will emit ~1.5GtCO<sub>2</sub> through 2100. Emissions from energy used to deploy renewable capacity are much larger at ~95GtCO<sub>2</sub>, equivalent to over two years of current global emissions and ~8% of the remaining carbon budget for 2&#176;C. These embedded transition emissions are reduced by 80% to 20GtCO<sub>2</sub> under a rapid decarbonization scenario limiting warming to 1.5&#176;C. However, they roughly double to 185GtCO<sub>2</sub> under a low-ambition transition consistent with current policies (2.7&#176;C warming by 2100), mainly because a slower transition relies more on fossil fuels. Under this status-quo, the emissions embedded in the transition total nearly half the remaining carbon budget for 1.5&#176;C. Our results provide the first holistic assessment of the carbon emissions embedded in the transition itself, and suggest that these emissions can be largely minimized through rapid energy decarbonization, an underappreciated benefit of enhanced climate ambition. &#160;</p>
Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu22-6603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu22-6603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:IOP Publishing Authors: Kirsten Zickfeld; Andrew H. MacDougall;H. Damon Matthews;
H. Damon Matthews
H. Damon Matthews in OpenAIREReto Knutti;
Reto Knutti
Reto Knutti in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/1/019501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/1/019501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Abstract With increasing the solar reflectance of urban surfaces, the outflow of short-wave solar radiation increases, less solar heat energy is absorbed leading to lower surface temperatures and reduced outflow of thermal radiation into the atmosphere. This process of “negative radiative forcing” effectively counters global warming. Cool roofs also reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win–win–win activity that can be undertaken immediately, outside of international negotiations to cap CO2 emissions. We review the status of cool roof and cool pavements technologies, policies, and programs in the U.S., Europe, and Asia. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.02.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 301 citations 301 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2012.02.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu