- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Martin Brtnický; Václav Pecina; Tivadar Baltazár; Michaela Vašinová Galiová; Ludmila Baláková; Agnieszka Bęś; Maja Radziemska;doi: 10.3390/su12177224
The environmental impacts of air transport and air transportation systems have become increasingly important and are heavily debated. The aim of the study was to determine the degree of soil contamination by the potentially toxic elements (Cu, Ni, Pb, and Zn) in the vicinity of the airport runway and to evaluate whether airport traffic has had factual toxic effects on airport vegetation. The overall assessment of soil contamination by means of the Nemerow integrated pollution index indicated slight pollution; evaluation by the geoaccumulation index evinced moderate contamination by Zn and nonexistent to moderate contamination by Cu, Ni, and Pb. A significant difference between the take-off and landing sections of the runway was not statistically confirmed. The vegetation risk assessment by means of the potential ecological risk index (RI) showed the low ecological risk, while the phytotoxicity test revealed an inhibition of up to 33.7%, with a slight inhibition of 16.7% on average, and thus low toxic effects of airport traffic on airport vegetation. The results of the linear regression model between phytotoxicity and RI manifested no relation between the two. The outcomes from other studies suggest that the range of elements and the extent of contamination can be highly variable at different airports and frequently affected by car traffic. Therefore, further research on this issue is needed for the more precise determination of the elements emitted by air traffic at airports.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Łukasz Sikorski; Agnieszka Bęś; Barbara Adomas; Michał Baciak;pmid: 30739875
Research into plants plays an important role in evaluations of water pollution with pesticides. Lemna minor (common duckweed) is widely used as an indicator organism in environmental risk assessments. The aim of this study was to determine by biological Lemna test and chemical methods the effect of glyphosate (GlyPh) concentrations of 0-40 μM on duckweed, an important link in the food chain. There are no published data on glyphosate's effects on the activity of enzymes of the amine biosynthesis pathway: ornithine decarboxylase, S-adenosylmethionine decarboxylase, tyrosine decarboxylase, lysine decarboxylase and arginine decarboxylase, and the content of shikimic acid and glyphosate residues in the tissues of common duckweed. It was found that glyphosate was taken up by duckweed. In plants exposed to 3 μM of glyphosate for 7 days, glyphosate content exceeded the acceptable Maximum Residue Level (MRL) 10-fold. Glyphosate accumulation in plant tissues exerted toxic effects on duckweed by decreasing its growth and yield, inhibiting the synthesis of chlorophyll a and b and carotenoids, and decreasing the photochemical activity of photosystem II (PSII). However, glyphosate increased the concentration of shikimic acid in the tested plants. The activity of ornithine decarboxylase increased 4-fold in plants exposed to 20 μM of the herbicide. As a water pollutant, glyphosate increased the content of biogenic amines tyramine, putrescine, cadaverine, spermidine and spermine. The activity of peroxidase and catalase was highest in duckweed exposed to 20 μM and 7 μM of the herbicide, respectively. The predicted toxic units were calculated based on glyphosate content and the computed EC values. The mean effective concentration calculated for all morphological and biochemical parameters of duckweed was determined at EC10 = 1.55, EC25 = 3.36, EC50 = 6.62 and EC90 = 14.08 μM of glyphosate. The study demonstrated that glyphosate, the active ingredient of Roundup Ultra 360 SL herbicide, induces morphological and biochemical changes in non-target plants and exerts toxic effects on aquatic ecosystems even during short-term exposure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2019.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2019.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Maja Radziemska; Zygmunt Mariusz Gusiatin; Zbigniew Mazur; Tereza Hammerschmiedt; +7 AuthorsMaja Radziemska; Zygmunt Mariusz Gusiatin; Zbigniew Mazur; Tereza Hammerschmiedt; Agnieszka Bęś; Antonin Kintl; Michaela Vasinova Galiova; Jiri Holatko; Aurelia Blazejczyk; Vinod Kumar; Martin Brtnicky;doi: 10.3390/su14010445
In response to the growing threat to the quality of the soil environment, new technologies are being developed to protect and remediate contaminated sites. A new approach, namely, assisted phytostabilization, has been used in areas contaminated with high levels of potentially toxic elements (PTEs), using various soil additives. This paper determined the effectiveness of biochar-assisted phytostabilization using Dactylis glomerata L. of soil contaminated with high concentrations of the selected PTEs (in mg/kg soil): Cu (780 ± 144), Cd (25.9 ± 2.5), Pb (13,540 ± 669) and Zn (8433 ± 1376). The content of the selected PTEs in the roots and above-ground parts of the tested grass, and in the soil, was determined by atomic absorption spectrometry (AAS). The addition of biochar to the contaminated soil led to an increase in plant biomass and caused an increase in soil pH values. Concentrations of Cu, Cd, Pb and Zn were higher in the roots than in the above-ground parts of Dactylis glomerata L. The application of biochar significantly reduced the total content of PTEs in the soil after finishing the phytostabilization experiment, as well as reducing the content of bioavailable forms extracted from the soil using CaCl2 solution, which was clearly visible with respect to Cd and Pb. It is concluded that the use of biochar in supporting the processes of assisted phytostabilization of soils contaminated with PTEs is justified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Maja Radziemska; Zygmunt M. Gusiatin; Agnieszka Bęś; Justyna Czajkowska; Zbigniew Mazur; Tereza Hammerschmiedt; Łukasz Sikorski; Eliska Kobzova; Barbara K. Klik; Wojciech Sas; Ernesta Liniauskienė; Jiri Holatko; Martin Brtnicky;doi: 10.3390/en14071984
(1) Background: sewage sludge is a by-product of wastewater treatment, which needs to be managed appropriately, e.g., in composting processes. The application of municipal sewage sludge composts (MSSCs) as a soil amendment is a potential way to effectively manage sewage sludge. (2) Methods: this paper presents the results of a vegetation pot experiment undertaken to assess the suitability of Dactylis glomerata L. and MSSC in the aided phytostabilization technique when applied on soils from an area effected by industrial pressure; this is characterized by high levels of heavy metal (HM). The contents of HMs in the test plant (the roots and above-ground parts), as well as in the soil and MSSC, were determined via an atomic spectrometry method. (3) Results: the application of MSSC positively contributed to an increased production of plant biomass and an increase in the pH in the soil. Concentrations of Cu, Cd, Pb, Zn, and Cr were higher in the roots than in the above-ground parts of Dactylis glomerata L. The addition of MSSC contributed most significantly to the considerable reduction in Ni, Pb, and Zn contents in the soil after the experiment. (4) Conclusions: MSSC can support the phytostabilization of soils contaminated with high levels of HMs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Zygmunt M. Gusiatin; Martin Brtnický; Martin Brtnický; Agnieszka Bęś; Zbigniew Mazur; Artemi Cerdà; Maja Radziemska; Jerzy Jeznach;pmid: 31740234
Due to the presence of toxic pollutants, soils in former military areas need remedial actions with environmentally friendly methods. Greenhouse experiments were conducted to investigate the aided phytostabilization of multi-heavy metals (HMs), i.e. Cd, Cr, Cu, Ni, Pb, Zn, in post-military soil by Festuca rubra and three mineral amendments (diatomite, dolomite and halloysite). The amendments were applied at 0 and 3.0% to each pot filled with 5 kg of polluted soil. After seven weeks of the phytostabilization, selected soil properties, biomass yield of F. rubra and immobilization of HMs by their accumulation in plant and redistribution among individual fractions in soil were determined. In addition, ecotoxicology parameters of non-amended and amended soil were established using Phytotoxkit (Sinapsis alba) and Ostracodtoxkit (Heterocypris incongruens) tests. The addition of halloysite significantly increased F. rubra biomass. Diatomite significantly increased both the Cd, Cu, Pb and Cr concentrations in the roots and the pH of the soil. The application of halloysite significantly decreased the Cd and Zn contents of the soil after the completion of the experiment. Dolomite and halloysite were more effective in HM immobilization in soil by decreasing their content in an exchangeable fraction than diatomite. These soil amendments significantly differentiated the length of S. alba roots and had a positive effect on the development of H. incongruens.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.109934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.109934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Maja Radziemska; Justyna Dzięcioł; Zygmunt M. Gusiatin; Agnieszka Bęś; Wojciech Sas; Andrzej Głuchowski; Beata Gawryszewska; Zbigniew Mazur; Martin Brtnicky;doi: 10.3390/en14144300
(1) Background: The growing demand for developing new methods of degraded land remediation is linked to the need to improve the soil environment, including post-industrial soils. Biological methods such as the aided phytostabilisation technique are the most common methods applied to achieve effective remediation. This study aimed to determine the technical potential of methods using novel or yet not used soil amendments, such as blast furnace slag (BFS) and coal slag (CS), with Dactylis glomerata L. as a test plant. (2) Methods: The experiment was conducted on post-industrial area soil with high concentrations of Cu (761 mg/kg), Cd (23.9 mg/kg), Pb (13,539 mg/kg) and Zn (8683 mg/kg). The heavy metal content in roots and the above-ground parts of plants and soil was determined by flame atomic absorption spectrometry. (3) Results: The addition of BFS to the soil was the most effective in increasing Dactylis glomerata L. biomass yield. The Cu, Cd, Pb, and Zn concentrations were higher in the roots than in the above-ground parts of the plants. BFS and CS induced a considerable increase in soil pH, compared to the control treatment. The addition of BFS also produced the greatest significant decrease in the Pb content in soil following the phytostabilisation process. (4) Conclusions: In view of the above, the use of BFS in the aided phytostabilisation in soils contaminated with high levels of Cu, Cd, Pb, and Zn can be recommended for larger-scale in situ projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Agnieszka Bęś; Kazimierz Warmiński; Barbara Adomas;Research into trees plays a very important role in evaluations of soil contamination with diesel oil. Trees are ideal for reclaiming contaminated soils because their large biomass renders them more resistant to higher concentrations of pollutants. In the literature, there is a general scarcity of long-term studies performed on trees, in particular European beeches. The aim of this study was to evaluate the responses of Scots pines and European beeches grown for 8 years on soil contaminated with diesel oil. Selected morphological and physiological parameters of trees were analyzed. The biomass yield of Scots pines was not significantly correlated with increasing concentrations of diesel oil, but it was more than 700% higher than in European beeches. Scots pines were taller and had a larger stem diameter than European beeches during the 8-year study. The diameter of trees grown on the most contaminated soil was reduced 1.5-fold in Scots pines and more than twofold in European beeches. The length of Scots pine needles from the most contaminated treatment decreased by 50% relative to control needles. The shortest needles were heaviest. The fluctuating asymmetry (FA) of needle length was highest in Scots pines grown on the most contaminated soil, whereas the reverse was noted in the FA of needle weight. Diesel oil decreased the concentrations of chlorophylls a and b, total chlorophyll, and carotenoids. The Fv/Fm ratio of needles and leaves was influenced by the tested concentrations of diesel oil. The results of the study indicate that the Scots pine better adapts (grows more rapidly and produces higher biomass) to long-term soil contamination with diesel oil than the European beech. In European beeches, growth inhibition and leaf discoloration (a decrease in chlorophyll content) were observed already after the first year of the experiment, which indicates that 1-year-old seedlings of European beech are robust bioindicators of soil contamination with diesel oil.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-04328-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-04328-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Maja Radziemska; Mariusz Zygmunt Gusiatin; Zbigniew Mazur; Algirdas Radzevičius; +6 AuthorsMaja Radziemska; Mariusz Zygmunt Gusiatin; Zbigniew Mazur; Algirdas Radzevičius; Agnieszka Bęś; Raimondas Šadzevičius; Jiri Holatko; Midona Dapkienė; Inga Adamonytė; Martin Brtnicky;doi: 10.3390/en16041778
The presence of potentially toxic elements (PTEs) in soils can upset the natural balance and increase the risk of PTE incorporation into the food chain. The use of composite biochar with municipal sewage sludge compost (MSSC/C) can be an effective way of both managing waste, such as sewage sludge, and providing an effective additive-supporting phytostabilization processes. The effectiveness of D. glomerata and MSSC/C in the technique of assisted phytostabilization of industrially contaminated soils was determined under the pot experiment conditions. The PTE contents in D. glomerata and the soil were determined using the spectrophotometric method. The addition of MSSC/C to PTE-contaminated soil contributed to an 18% increase in plant biomass and increased the soil pH by 1.67 units, with the PTE concentration being higher in the roots than in the above-ground parts of D. glomerata. The MSSC/C addition had the strongest effect on the reduction in Cd, Cr, and Ni contents in the soil following the completion of the experiment. The current study confirmed the effectiveness of MSSC/C in aiding the phytostabilization processes in PTE-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Kazimierz Warmiński; Klaudia Anna Jankowska; Agnieszka Bęś; Mariusz Jerzy Stolarski;doi: 10.3390/en17010216
As living standards improve worldwide, the demand for energy increases. However, climate changes and decreasing fossil fuel deposits have increased interest in renewable energy sources, including pellets produced from forest residues. This study aimed to compare changes in concentration of gases (CO, CO2, O2, volatile organic compounds—VOCs) in enclosed headspaces above pellets produced from deciduous (oak OA, birch BI) and coniferous (pine PI, spruce SP) dendromass and selected types of commercial pellets during their storage. The experiment measured the concentration of gas released from the pellets in storage daily for 14 days. The highest mean CO concentration was found for PI pellets (1194 ppm), and the lowest was for OA (63.3 ppm). Likewise, the highest CO2 concentration was noted for PI pellets (4650 ppm), and the lowest was for BI (1279 ppm). The largest VOC amount was released in the headspace above PI (88.8 ppm), and the smallest was above BI (4.6 ppm). The oxygen concentration was the lowest as measured for PI (minimum 16.1% v/v) and for SP (19.3% v/v). The threshold limit value (8 h) for CO was exceeded for all the pellets under analysis and, in the case of CO2, only for PI after day 10 of incubation. The study findings are extremely important from a scientific (but mainly from a practical) perspective because of the safety of storing and transporting wood pellets. The knowledge of autooxidation processes in those biofuels can help organize their logistics and storage and result in proper warehouse ventilation and monitoring of noxious gases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Łukasz Sikorski; Agnieszka Bęś; Kazimierz Warmiński; Wojciech Truszkowski; Przemysław Kowal;Antibiotics with significant environmental toxicity, e.g., tetracyclines (TCs), are often used in large quantities worldwide, with 50–80% of the applied dose ending up in the environment. This study aimed to investigate the effects of exposure to tetracycline hydrochloride (TC) and minocycline hydrochloride (MIN) on L. minor. Our research evaluated the phytotoxicity of the TCs by analyzing plant growth and biomass and evaluating assimilation pigment levels and fluorescence. The research was extended with the ability potential of duckweed as a tool for removing TCs from water/wastewater. The results demonstrated that both TCs influenced Ir, Iy, biomass, and photosynthetic efficiency. The uptake of TC and MIN by duckweed was proportional to the concentration in the growth medium. The TC was absorbed more readily, reaching up to 8.09 mg × g−1 of dry weight (DW) at the highest concentration (19.2 mg × L−1), while MIN reached 6.01 mg × g−1 of DW. As indicated, the consequences of the influence of TC on plants were slightly smaller, in comparison to MIN, while the plants could biosorb this drug, even at the lowest tested concentration. This study has shown that using plants for drug biosorption can be an effective standalone or complementary method for water and wastewater treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules29163971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules29163971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Martin Brtnický; Václav Pecina; Tivadar Baltazár; Michaela Vašinová Galiová; Ludmila Baláková; Agnieszka Bęś; Maja Radziemska;doi: 10.3390/su12177224
The environmental impacts of air transport and air transportation systems have become increasingly important and are heavily debated. The aim of the study was to determine the degree of soil contamination by the potentially toxic elements (Cu, Ni, Pb, and Zn) in the vicinity of the airport runway and to evaluate whether airport traffic has had factual toxic effects on airport vegetation. The overall assessment of soil contamination by means of the Nemerow integrated pollution index indicated slight pollution; evaluation by the geoaccumulation index evinced moderate contamination by Zn and nonexistent to moderate contamination by Cu, Ni, and Pb. A significant difference between the take-off and landing sections of the runway was not statistically confirmed. The vegetation risk assessment by means of the potential ecological risk index (RI) showed the low ecological risk, while the phytotoxicity test revealed an inhibition of up to 33.7%, with a slight inhibition of 16.7% on average, and thus low toxic effects of airport traffic on airport vegetation. The results of the linear regression model between phytotoxicity and RI manifested no relation between the two. The outcomes from other studies suggest that the range of elements and the extent of contamination can be highly variable at different airports and frequently affected by car traffic. Therefore, further research on this issue is needed for the more precise determination of the elements emitted by air traffic at airports.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Łukasz Sikorski; Agnieszka Bęś; Barbara Adomas; Michał Baciak;pmid: 30739875
Research into plants plays an important role in evaluations of water pollution with pesticides. Lemna minor (common duckweed) is widely used as an indicator organism in environmental risk assessments. The aim of this study was to determine by biological Lemna test and chemical methods the effect of glyphosate (GlyPh) concentrations of 0-40 μM on duckweed, an important link in the food chain. There are no published data on glyphosate's effects on the activity of enzymes of the amine biosynthesis pathway: ornithine decarboxylase, S-adenosylmethionine decarboxylase, tyrosine decarboxylase, lysine decarboxylase and arginine decarboxylase, and the content of shikimic acid and glyphosate residues in the tissues of common duckweed. It was found that glyphosate was taken up by duckweed. In plants exposed to 3 μM of glyphosate for 7 days, glyphosate content exceeded the acceptable Maximum Residue Level (MRL) 10-fold. Glyphosate accumulation in plant tissues exerted toxic effects on duckweed by decreasing its growth and yield, inhibiting the synthesis of chlorophyll a and b and carotenoids, and decreasing the photochemical activity of photosystem II (PSII). However, glyphosate increased the concentration of shikimic acid in the tested plants. The activity of ornithine decarboxylase increased 4-fold in plants exposed to 20 μM of the herbicide. As a water pollutant, glyphosate increased the content of biogenic amines tyramine, putrescine, cadaverine, spermidine and spermine. The activity of peroxidase and catalase was highest in duckweed exposed to 20 μM and 7 μM of the herbicide, respectively. The predicted toxic units were calculated based on glyphosate content and the computed EC values. The mean effective concentration calculated for all morphological and biochemical parameters of duckweed was determined at EC10 = 1.55, EC25 = 3.36, EC50 = 6.62 and EC90 = 14.08 μM of glyphosate. The study demonstrated that glyphosate, the active ingredient of Roundup Ultra 360 SL herbicide, induces morphological and biochemical changes in non-target plants and exerts toxic effects on aquatic ecosystems even during short-term exposure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2019.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2019.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Maja Radziemska; Zygmunt Mariusz Gusiatin; Zbigniew Mazur; Tereza Hammerschmiedt; +7 AuthorsMaja Radziemska; Zygmunt Mariusz Gusiatin; Zbigniew Mazur; Tereza Hammerschmiedt; Agnieszka Bęś; Antonin Kintl; Michaela Vasinova Galiova; Jiri Holatko; Aurelia Blazejczyk; Vinod Kumar; Martin Brtnicky;doi: 10.3390/su14010445
In response to the growing threat to the quality of the soil environment, new technologies are being developed to protect and remediate contaminated sites. A new approach, namely, assisted phytostabilization, has been used in areas contaminated with high levels of potentially toxic elements (PTEs), using various soil additives. This paper determined the effectiveness of biochar-assisted phytostabilization using Dactylis glomerata L. of soil contaminated with high concentrations of the selected PTEs (in mg/kg soil): Cu (780 ± 144), Cd (25.9 ± 2.5), Pb (13,540 ± 669) and Zn (8433 ± 1376). The content of the selected PTEs in the roots and above-ground parts of the tested grass, and in the soil, was determined by atomic absorption spectrometry (AAS). The addition of biochar to the contaminated soil led to an increase in plant biomass and caused an increase in soil pH values. Concentrations of Cu, Cd, Pb and Zn were higher in the roots than in the above-ground parts of Dactylis glomerata L. The application of biochar significantly reduced the total content of PTEs in the soil after finishing the phytostabilization experiment, as well as reducing the content of bioavailable forms extracted from the soil using CaCl2 solution, which was clearly visible with respect to Cd and Pb. It is concluded that the use of biochar in supporting the processes of assisted phytostabilization of soils contaminated with PTEs is justified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Maja Radziemska; Zygmunt M. Gusiatin; Agnieszka Bęś; Justyna Czajkowska; Zbigniew Mazur; Tereza Hammerschmiedt; Łukasz Sikorski; Eliska Kobzova; Barbara K. Klik; Wojciech Sas; Ernesta Liniauskienė; Jiri Holatko; Martin Brtnicky;doi: 10.3390/en14071984
(1) Background: sewage sludge is a by-product of wastewater treatment, which needs to be managed appropriately, e.g., in composting processes. The application of municipal sewage sludge composts (MSSCs) as a soil amendment is a potential way to effectively manage sewage sludge. (2) Methods: this paper presents the results of a vegetation pot experiment undertaken to assess the suitability of Dactylis glomerata L. and MSSC in the aided phytostabilization technique when applied on soils from an area effected by industrial pressure; this is characterized by high levels of heavy metal (HM). The contents of HMs in the test plant (the roots and above-ground parts), as well as in the soil and MSSC, were determined via an atomic spectrometry method. (3) Results: the application of MSSC positively contributed to an increased production of plant biomass and an increase in the pH in the soil. Concentrations of Cu, Cd, Pb, Zn, and Cr were higher in the roots than in the above-ground parts of Dactylis glomerata L. The addition of MSSC contributed most significantly to the considerable reduction in Ni, Pb, and Zn contents in the soil after the experiment. (4) Conclusions: MSSC can support the phytostabilization of soils contaminated with high levels of HMs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Zygmunt M. Gusiatin; Martin Brtnický; Martin Brtnický; Agnieszka Bęś; Zbigniew Mazur; Artemi Cerdà; Maja Radziemska; Jerzy Jeznach;pmid: 31740234
Due to the presence of toxic pollutants, soils in former military areas need remedial actions with environmentally friendly methods. Greenhouse experiments were conducted to investigate the aided phytostabilization of multi-heavy metals (HMs), i.e. Cd, Cr, Cu, Ni, Pb, Zn, in post-military soil by Festuca rubra and three mineral amendments (diatomite, dolomite and halloysite). The amendments were applied at 0 and 3.0% to each pot filled with 5 kg of polluted soil. After seven weeks of the phytostabilization, selected soil properties, biomass yield of F. rubra and immobilization of HMs by their accumulation in plant and redistribution among individual fractions in soil were determined. In addition, ecotoxicology parameters of non-amended and amended soil were established using Phytotoxkit (Sinapsis alba) and Ostracodtoxkit (Heterocypris incongruens) tests. The addition of halloysite significantly increased F. rubra biomass. Diatomite significantly increased both the Cd, Cu, Pb and Cr concentrations in the roots and the pH of the soil. The application of halloysite significantly decreased the Cd and Zn contents of the soil after the completion of the experiment. Dolomite and halloysite were more effective in HM immobilization in soil by decreasing their content in an exchangeable fraction than diatomite. These soil amendments significantly differentiated the length of S. alba roots and had a positive effect on the development of H. incongruens.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.109934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2019.109934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Maja Radziemska; Justyna Dzięcioł; Zygmunt M. Gusiatin; Agnieszka Bęś; Wojciech Sas; Andrzej Głuchowski; Beata Gawryszewska; Zbigniew Mazur; Martin Brtnicky;doi: 10.3390/en14144300
(1) Background: The growing demand for developing new methods of degraded land remediation is linked to the need to improve the soil environment, including post-industrial soils. Biological methods such as the aided phytostabilisation technique are the most common methods applied to achieve effective remediation. This study aimed to determine the technical potential of methods using novel or yet not used soil amendments, such as blast furnace slag (BFS) and coal slag (CS), with Dactylis glomerata L. as a test plant. (2) Methods: The experiment was conducted on post-industrial area soil with high concentrations of Cu (761 mg/kg), Cd (23.9 mg/kg), Pb (13,539 mg/kg) and Zn (8683 mg/kg). The heavy metal content in roots and the above-ground parts of plants and soil was determined by flame atomic absorption spectrometry. (3) Results: The addition of BFS to the soil was the most effective in increasing Dactylis glomerata L. biomass yield. The Cu, Cd, Pb, and Zn concentrations were higher in the roots than in the above-ground parts of the plants. BFS and CS induced a considerable increase in soil pH, compared to the control treatment. The addition of BFS also produced the greatest significant decrease in the Pb content in soil following the phytostabilisation process. (4) Conclusions: In view of the above, the use of BFS in the aided phytostabilisation in soils contaminated with high levels of Cu, Cd, Pb, and Zn can be recommended for larger-scale in situ projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Agnieszka Bęś; Kazimierz Warmiński; Barbara Adomas;Research into trees plays a very important role in evaluations of soil contamination with diesel oil. Trees are ideal for reclaiming contaminated soils because their large biomass renders them more resistant to higher concentrations of pollutants. In the literature, there is a general scarcity of long-term studies performed on trees, in particular European beeches. The aim of this study was to evaluate the responses of Scots pines and European beeches grown for 8 years on soil contaminated with diesel oil. Selected morphological and physiological parameters of trees were analyzed. The biomass yield of Scots pines was not significantly correlated with increasing concentrations of diesel oil, but it was more than 700% higher than in European beeches. Scots pines were taller and had a larger stem diameter than European beeches during the 8-year study. The diameter of trees grown on the most contaminated soil was reduced 1.5-fold in Scots pines and more than twofold in European beeches. The length of Scots pine needles from the most contaminated treatment decreased by 50% relative to control needles. The shortest needles were heaviest. The fluctuating asymmetry (FA) of needle length was highest in Scots pines grown on the most contaminated soil, whereas the reverse was noted in the FA of needle weight. Diesel oil decreased the concentrations of chlorophylls a and b, total chlorophyll, and carotenoids. The Fv/Fm ratio of needles and leaves was influenced by the tested concentrations of diesel oil. The results of the study indicate that the Scots pine better adapts (grows more rapidly and produces higher biomass) to long-term soil contamination with diesel oil than the European beech. In European beeches, growth inhibition and leaf discoloration (a decrease in chlorophyll content) were observed already after the first year of the experiment, which indicates that 1-year-old seedlings of European beech are robust bioindicators of soil contamination with diesel oil.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-04328-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-019-04328-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Maja Radziemska; Mariusz Zygmunt Gusiatin; Zbigniew Mazur; Algirdas Radzevičius; +6 AuthorsMaja Radziemska; Mariusz Zygmunt Gusiatin; Zbigniew Mazur; Algirdas Radzevičius; Agnieszka Bęś; Raimondas Šadzevičius; Jiri Holatko; Midona Dapkienė; Inga Adamonytė; Martin Brtnicky;doi: 10.3390/en16041778
The presence of potentially toxic elements (PTEs) in soils can upset the natural balance and increase the risk of PTE incorporation into the food chain. The use of composite biochar with municipal sewage sludge compost (MSSC/C) can be an effective way of both managing waste, such as sewage sludge, and providing an effective additive-supporting phytostabilization processes. The effectiveness of D. glomerata and MSSC/C in the technique of assisted phytostabilization of industrially contaminated soils was determined under the pot experiment conditions. The PTE contents in D. glomerata and the soil were determined using the spectrophotometric method. The addition of MSSC/C to PTE-contaminated soil contributed to an 18% increase in plant biomass and increased the soil pH by 1.67 units, with the PTE concentration being higher in the roots than in the above-ground parts of D. glomerata. The MSSC/C addition had the strongest effect on the reduction in Cd, Cr, and Ni contents in the soil following the completion of the experiment. The current study confirmed the effectiveness of MSSC/C in aiding the phytostabilization processes in PTE-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Kazimierz Warmiński; Klaudia Anna Jankowska; Agnieszka Bęś; Mariusz Jerzy Stolarski;doi: 10.3390/en17010216
As living standards improve worldwide, the demand for energy increases. However, climate changes and decreasing fossil fuel deposits have increased interest in renewable energy sources, including pellets produced from forest residues. This study aimed to compare changes in concentration of gases (CO, CO2, O2, volatile organic compounds—VOCs) in enclosed headspaces above pellets produced from deciduous (oak OA, birch BI) and coniferous (pine PI, spruce SP) dendromass and selected types of commercial pellets during their storage. The experiment measured the concentration of gas released from the pellets in storage daily for 14 days. The highest mean CO concentration was found for PI pellets (1194 ppm), and the lowest was for OA (63.3 ppm). Likewise, the highest CO2 concentration was noted for PI pellets (4650 ppm), and the lowest was for BI (1279 ppm). The largest VOC amount was released in the headspace above PI (88.8 ppm), and the smallest was above BI (4.6 ppm). The oxygen concentration was the lowest as measured for PI (minimum 16.1% v/v) and for SP (19.3% v/v). The threshold limit value (8 h) for CO was exceeded for all the pellets under analysis and, in the case of CO2, only for PI after day 10 of incubation. The study findings are extremely important from a scientific (but mainly from a practical) perspective because of the safety of storing and transporting wood pellets. The knowledge of autooxidation processes in those biofuels can help organize their logistics and storage and result in proper warehouse ventilation and monitoring of noxious gases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Łukasz Sikorski; Agnieszka Bęś; Kazimierz Warmiński; Wojciech Truszkowski; Przemysław Kowal;Antibiotics with significant environmental toxicity, e.g., tetracyclines (TCs), are often used in large quantities worldwide, with 50–80% of the applied dose ending up in the environment. This study aimed to investigate the effects of exposure to tetracycline hydrochloride (TC) and minocycline hydrochloride (MIN) on L. minor. Our research evaluated the phytotoxicity of the TCs by analyzing plant growth and biomass and evaluating assimilation pigment levels and fluorescence. The research was extended with the ability potential of duckweed as a tool for removing TCs from water/wastewater. The results demonstrated that both TCs influenced Ir, Iy, biomass, and photosynthetic efficiency. The uptake of TC and MIN by duckweed was proportional to the concentration in the growth medium. The TC was absorbed more readily, reaching up to 8.09 mg × g−1 of dry weight (DW) at the highest concentration (19.2 mg × L−1), while MIN reached 6.01 mg × g−1 of DW. As indicated, the consequences of the influence of TC on plants were slightly smaller, in comparison to MIN, while the plants could biosorb this drug, even at the lowest tested concentration. This study has shown that using plants for drug biosorption can be an effective standalone or complementary method for water and wastewater treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules29163971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules29163971&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu