- home
- Advanced Search
- Energy Research
- Energies
- Energy Research
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Maja Radziemska; Zygmunt M. Gusiatin; Agnieszka Bęś; Justyna Czajkowska; Zbigniew Mazur; Tereza Hammerschmiedt; Łukasz Sikorski; Eliska Kobzova; Barbara K. Klik; Wojciech Sas; Ernesta Liniauskienė; Jiri Holatko; Martin Brtnicky;doi: 10.3390/en14071984
(1) Background: sewage sludge is a by-product of wastewater treatment, which needs to be managed appropriately, e.g., in composting processes. The application of municipal sewage sludge composts (MSSCs) as a soil amendment is a potential way to effectively manage sewage sludge. (2) Methods: this paper presents the results of a vegetation pot experiment undertaken to assess the suitability of Dactylis glomerata L. and MSSC in the aided phytostabilization technique when applied on soils from an area effected by industrial pressure; this is characterized by high levels of heavy metal (HM). The contents of HMs in the test plant (the roots and above-ground parts), as well as in the soil and MSSC, were determined via an atomic spectrometry method. (3) Results: the application of MSSC positively contributed to an increased production of plant biomass and an increase in the pH in the soil. Concentrations of Cu, Cd, Pb, Zn, and Cr were higher in the roots than in the above-ground parts of Dactylis glomerata L. The addition of MSSC contributed most significantly to the considerable reduction in Ni, Pb, and Zn contents in the soil after the experiment. (4) Conclusions: MSSC can support the phytostabilization of soils contaminated with high levels of HMs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Maja Radziemska; Justyna Dzięcioł; Zygmunt M. Gusiatin; Agnieszka Bęś; Wojciech Sas; Andrzej Głuchowski; Beata Gawryszewska; Zbigniew Mazur; Martin Brtnicky;doi: 10.3390/en14144300
(1) Background: The growing demand for developing new methods of degraded land remediation is linked to the need to improve the soil environment, including post-industrial soils. Biological methods such as the aided phytostabilisation technique are the most common methods applied to achieve effective remediation. This study aimed to determine the technical potential of methods using novel or yet not used soil amendments, such as blast furnace slag (BFS) and coal slag (CS), with Dactylis glomerata L. as a test plant. (2) Methods: The experiment was conducted on post-industrial area soil with high concentrations of Cu (761 mg/kg), Cd (23.9 mg/kg), Pb (13,539 mg/kg) and Zn (8683 mg/kg). The heavy metal content in roots and the above-ground parts of plants and soil was determined by flame atomic absorption spectrometry. (3) Results: The addition of BFS to the soil was the most effective in increasing Dactylis glomerata L. biomass yield. The Cu, Cd, Pb, and Zn concentrations were higher in the roots than in the above-ground parts of the plants. BFS and CS induced a considerable increase in soil pH, compared to the control treatment. The addition of BFS also produced the greatest significant decrease in the Pb content in soil following the phytostabilisation process. (4) Conclusions: In view of the above, the use of BFS in the aided phytostabilisation in soils contaminated with high levels of Cu, Cd, Pb, and Zn can be recommended for larger-scale in situ projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Maja Radziemska; Mariusz Zygmunt Gusiatin; Zbigniew Mazur; Algirdas Radzevičius; +6 AuthorsMaja Radziemska; Mariusz Zygmunt Gusiatin; Zbigniew Mazur; Algirdas Radzevičius; Agnieszka Bęś; Raimondas Šadzevičius; Jiri Holatko; Midona Dapkienė; Inga Adamonytė; Martin Brtnicky;doi: 10.3390/en16041778
The presence of potentially toxic elements (PTEs) in soils can upset the natural balance and increase the risk of PTE incorporation into the food chain. The use of composite biochar with municipal sewage sludge compost (MSSC/C) can be an effective way of both managing waste, such as sewage sludge, and providing an effective additive-supporting phytostabilization processes. The effectiveness of D. glomerata and MSSC/C in the technique of assisted phytostabilization of industrially contaminated soils was determined under the pot experiment conditions. The PTE contents in D. glomerata and the soil were determined using the spectrophotometric method. The addition of MSSC/C to PTE-contaminated soil contributed to an 18% increase in plant biomass and increased the soil pH by 1.67 units, with the PTE concentration being higher in the roots than in the above-ground parts of D. glomerata. The MSSC/C addition had the strongest effect on the reduction in Cd, Cr, and Ni contents in the soil following the completion of the experiment. The current study confirmed the effectiveness of MSSC/C in aiding the phytostabilization processes in PTE-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Kazimierz Warmiński; Klaudia Anna Jankowska; Agnieszka Bęś; Mariusz Jerzy Stolarski;doi: 10.3390/en17010216
As living standards improve worldwide, the demand for energy increases. However, climate changes and decreasing fossil fuel deposits have increased interest in renewable energy sources, including pellets produced from forest residues. This study aimed to compare changes in concentration of gases (CO, CO2, O2, volatile organic compounds—VOCs) in enclosed headspaces above pellets produced from deciduous (oak OA, birch BI) and coniferous (pine PI, spruce SP) dendromass and selected types of commercial pellets during their storage. The experiment measured the concentration of gas released from the pellets in storage daily for 14 days. The highest mean CO concentration was found for PI pellets (1194 ppm), and the lowest was for OA (63.3 ppm). Likewise, the highest CO2 concentration was noted for PI pellets (4650 ppm), and the lowest was for BI (1279 ppm). The largest VOC amount was released in the headspace above PI (88.8 ppm), and the smallest was above BI (4.6 ppm). The oxygen concentration was the lowest as measured for PI (minimum 16.1% v/v) and for SP (19.3% v/v). The threshold limit value (8 h) for CO was exceeded for all the pellets under analysis and, in the case of CO2, only for PI after day 10 of incubation. The study findings are extremely important from a scientific (but mainly from a practical) perspective because of the safety of storing and transporting wood pellets. The knowledge of autooxidation processes in those biofuels can help organize their logistics and storage and result in proper warehouse ventilation and monitoring of noxious gases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Maja Radziemska; Zygmunt M. Gusiatin; Agnieszka Bęś; Justyna Czajkowska; Zbigniew Mazur; Tereza Hammerschmiedt; Łukasz Sikorski; Eliska Kobzova; Barbara K. Klik; Wojciech Sas; Ernesta Liniauskienė; Jiri Holatko; Martin Brtnicky;doi: 10.3390/en14071984
(1) Background: sewage sludge is a by-product of wastewater treatment, which needs to be managed appropriately, e.g., in composting processes. The application of municipal sewage sludge composts (MSSCs) as a soil amendment is a potential way to effectively manage sewage sludge. (2) Methods: this paper presents the results of a vegetation pot experiment undertaken to assess the suitability of Dactylis glomerata L. and MSSC in the aided phytostabilization technique when applied on soils from an area effected by industrial pressure; this is characterized by high levels of heavy metal (HM). The contents of HMs in the test plant (the roots and above-ground parts), as well as in the soil and MSSC, were determined via an atomic spectrometry method. (3) Results: the application of MSSC positively contributed to an increased production of plant biomass and an increase in the pH in the soil. Concentrations of Cu, Cd, Pb, Zn, and Cr were higher in the roots than in the above-ground parts of Dactylis glomerata L. The addition of MSSC contributed most significantly to the considerable reduction in Ni, Pb, and Zn contents in the soil after the experiment. (4) Conclusions: MSSC can support the phytostabilization of soils contaminated with high levels of HMs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Maja Radziemska; Justyna Dzięcioł; Zygmunt M. Gusiatin; Agnieszka Bęś; Wojciech Sas; Andrzej Głuchowski; Beata Gawryszewska; Zbigniew Mazur; Martin Brtnicky;doi: 10.3390/en14144300
(1) Background: The growing demand for developing new methods of degraded land remediation is linked to the need to improve the soil environment, including post-industrial soils. Biological methods such as the aided phytostabilisation technique are the most common methods applied to achieve effective remediation. This study aimed to determine the technical potential of methods using novel or yet not used soil amendments, such as blast furnace slag (BFS) and coal slag (CS), with Dactylis glomerata L. as a test plant. (2) Methods: The experiment was conducted on post-industrial area soil with high concentrations of Cu (761 mg/kg), Cd (23.9 mg/kg), Pb (13,539 mg/kg) and Zn (8683 mg/kg). The heavy metal content in roots and the above-ground parts of plants and soil was determined by flame atomic absorption spectrometry. (3) Results: The addition of BFS to the soil was the most effective in increasing Dactylis glomerata L. biomass yield. The Cu, Cd, Pb, and Zn concentrations were higher in the roots than in the above-ground parts of the plants. BFS and CS induced a considerable increase in soil pH, compared to the control treatment. The addition of BFS also produced the greatest significant decrease in the Pb content in soil following the phytostabilisation process. (4) Conclusions: In view of the above, the use of BFS in the aided phytostabilisation in soils contaminated with high levels of Cu, Cd, Pb, and Zn can be recommended for larger-scale in situ projects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Maja Radziemska; Mariusz Zygmunt Gusiatin; Zbigniew Mazur; Algirdas Radzevičius; +6 AuthorsMaja Radziemska; Mariusz Zygmunt Gusiatin; Zbigniew Mazur; Algirdas Radzevičius; Agnieszka Bęś; Raimondas Šadzevičius; Jiri Holatko; Midona Dapkienė; Inga Adamonytė; Martin Brtnicky;doi: 10.3390/en16041778
The presence of potentially toxic elements (PTEs) in soils can upset the natural balance and increase the risk of PTE incorporation into the food chain. The use of composite biochar with municipal sewage sludge compost (MSSC/C) can be an effective way of both managing waste, such as sewage sludge, and providing an effective additive-supporting phytostabilization processes. The effectiveness of D. glomerata and MSSC/C in the technique of assisted phytostabilization of industrially contaminated soils was determined under the pot experiment conditions. The PTE contents in D. glomerata and the soil were determined using the spectrophotometric method. The addition of MSSC/C to PTE-contaminated soil contributed to an 18% increase in plant biomass and increased the soil pH by 1.67 units, with the PTE concentration being higher in the roots than in the above-ground parts of D. glomerata. The MSSC/C addition had the strongest effect on the reduction in Cd, Cr, and Ni contents in the soil following the completion of the experiment. The current study confirmed the effectiveness of MSSC/C in aiding the phytostabilization processes in PTE-contaminated soils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Kazimierz Warmiński; Klaudia Anna Jankowska; Agnieszka Bęś; Mariusz Jerzy Stolarski;doi: 10.3390/en17010216
As living standards improve worldwide, the demand for energy increases. However, climate changes and decreasing fossil fuel deposits have increased interest in renewable energy sources, including pellets produced from forest residues. This study aimed to compare changes in concentration of gases (CO, CO2, O2, volatile organic compounds—VOCs) in enclosed headspaces above pellets produced from deciduous (oak OA, birch BI) and coniferous (pine PI, spruce SP) dendromass and selected types of commercial pellets during their storage. The experiment measured the concentration of gas released from the pellets in storage daily for 14 days. The highest mean CO concentration was found for PI pellets (1194 ppm), and the lowest was for OA (63.3 ppm). Likewise, the highest CO2 concentration was noted for PI pellets (4650 ppm), and the lowest was for BI (1279 ppm). The largest VOC amount was released in the headspace above PI (88.8 ppm), and the smallest was above BI (4.6 ppm). The oxygen concentration was the lowest as measured for PI (minimum 16.1% v/v) and for SP (19.3% v/v). The threshold limit value (8 h) for CO was exceeded for all the pellets under analysis and, in the case of CO2, only for PI after day 10 of incubation. The study findings are extremely important from a scientific (but mainly from a practical) perspective because of the safety of storing and transporting wood pellets. The knowledge of autooxidation processes in those biofuels can help organize their logistics and storage and result in proper warehouse ventilation and monitoring of noxious gases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu