- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:SAGE Publications Authors: Ru-Yu Wang; Pei Hu; Chia-Cheng Hu; Jeng-Shyang Pan;The Fruit Fly Optimization Algorithm is a swarm intelligence algorithm with strong versatility and high computational efficiency. However, when faced with complex multi-peak problems, Fruit Fly Optimization Algorithm tends to converge prematurely. In response to this situation, this article proposes a new optimized structure—Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm. The new algorithm uses the evolution matrix in QUasi-Affine TRansformation Evolution algorithm to update the position coordinates of particles. This strategy makes the movement of particles more scientific and the search space broader. In order to prove its effectiveness, we compare Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm with five other mature intelligent algorithms, and test them on 22 different types of benchmark functions. In order to observe the multi-faceted performance of Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm more intuitively, we also conduct experiments on algorithm convergence analysis, the Friedman test, the Wilcoxon signed-rank test, and running time comparison. Through the above several comparative experiments, Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm has indeed demonstrated its strong competitiveness. Finally, we apply it to Capacitated Vehicle Routing Problem. Through comparing with the contrast algorithms, it is confirmed that Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm can achieve better vehicle routes planning.
International Journa... arrow_drop_down International Journal of Distributed Sensor NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15501477211073037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Distributed Sensor NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15501477211073037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Shu-Chuan Chu; Shu-Chuan Chu; Jeng-Shyang Pan; Pei Hu;Abstract Inspired by migratory graying, Pan et al. proposed the fish migration optimization (FMO) algorithm. It integrates the models of migration and swim into the optimization process. This paper firstly proposes a binary version of FMO, called BFMO. In order to improve the search ability of BFMO, ABFMO is introduced to solve the problems of stagnation and falling into local traps. The transfer function is responsible for mapping the continuous search space to the binary space. It plays a critical factor in the binary meta-heuristics. This paper brings a new transfer function and compares it with the transfer functions used by BPSO, BGSA and BGWO. Experiments prove that the new transfer function has realized good results in the solving quality. Unit commitment (UC) is a NP-hard binary optimization problem. BFMO and ABFMO are tested with the IEEE benchmark systems consisting of various generating units with 24-h demand horizon. The effectivenesses of BFMO and ABFMO are compared with seven binary evolutionary algorithms. The simulation results and non-parametric tests verify that they achieve great performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Pei Hu; Jeng-Shyang Pan; Shu-Chuan Chu; Qing-Wei Chai; Tao Liu; Zhong-Cui Li;doi: 10.3390/app9214514
Two new hybrid algorithms are proposed to improve the performances of the meta-heuristic optimization algorithms, namely the Grey Wolf Optimizer (GWO) and Shuffled Frog Leaping Algorithm (SFLA). Firstly, it advances the hierarchy and position updating of the mathematical model of GWO, and then the SGWO algorithm is proposed based on the advantages of SFLA and GWO. It not only improves the ability of local search, but also speeds up the global convergence. Secondly, the SGWOD algorithm based on SGWO is proposed by using the benefit of differential evolution strategy. Through the experiments of the 29 benchmark functions, which are composed of the functions of unimodal, multimodal, fixed-dimension and composite multimodal, the performances of the new algorithms are better than that of GWO, SFLA and GWO-DE, and they greatly balances the exploration and exploitation. The proposed SGWO and SGWOD algorithms are also applied to the prediction model based on the neural network. Experimental results show the usefulness for forecasting the power daily load.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4514/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4514/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Zhi-Gang Du; Jeng-Shyang Pan; Shu-Chuan Chu; Han-Jiang Luo; Pei Hu;QUasi-Affine TRansformation Evolutionary algorithm (QUATRE) is a new optimization algorithm based on population for complex multiple real parameter optimization problems in real world. In this paper, a novel multi-group multi-choice communication strategy algorithm for QUasi-Affine TRansformation Evolutionary (MM-QUATRE) algorithm is proposed to solve the disadvantage that the original QUATRE is always easily to fall into local optimization in the strategy of updating bad nodes with multiple groups and multiple choices. We compared it with other intelligent algorithms, the most advanced PSO variant, parallel PSO (P-PSO) variant, native QUATRE and parallel QUATRE (P-PSO) under CEC2013 large-scale optimization test suite. Thus, the performance of MM-QUATRE was verified. The conclusion that the MM-QUATRE algorithm is superior to other intelligent algorithms is proved by the experimental results. In addition, the application results of MM-QUATRE algorithm (MM-QUATRE-RSSI) based on RSSI in WSN node localization were analyzed and studied. The results appear that this method has higher localization accuracy than other similar algorithms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2964783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2964783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Authors: Jeng-Shyang Pan; Pei Hu; Shu-Chuan Chu;doi: 10.3390/pr7110845
Wind and other renewable energy protects the ecological environment and improves economic efficiency. However, it is difficult to accurately predict wind power because of the randomness and volatility of wind. This paper proposes a new parallel heterogeneous model to predict the wind power. Parallel meta-heuristic saves computation time and improves solution quality. Four communication strategies, which include ranking, combination, dynamic change and hybrid, are introduced to balance exploration and exploitation. The dynamic change strategy is to dynamically increase or decrease the members of subgroup to keep the diversity of the population. The benchmark functions show that the algorithms have excellent performance in exploration and exploitation. In the end, they are applied to successfully realize the prediction for wind power by training the parameters of the neural network.
Processes arrow_drop_down ProcessesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2227-9717/7/11/845/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr7110845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2227-9717/7/11/845/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr7110845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:SAGE Publications Authors: Ru-Yu Wang; Pei Hu; Chia-Cheng Hu; Jeng-Shyang Pan;The Fruit Fly Optimization Algorithm is a swarm intelligence algorithm with strong versatility and high computational efficiency. However, when faced with complex multi-peak problems, Fruit Fly Optimization Algorithm tends to converge prematurely. In response to this situation, this article proposes a new optimized structure—Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm. The new algorithm uses the evolution matrix in QUasi-Affine TRansformation Evolution algorithm to update the position coordinates of particles. This strategy makes the movement of particles more scientific and the search space broader. In order to prove its effectiveness, we compare Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm with five other mature intelligent algorithms, and test them on 22 different types of benchmark functions. In order to observe the multi-faceted performance of Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm more intuitively, we also conduct experiments on algorithm convergence analysis, the Friedman test, the Wilcoxon signed-rank test, and running time comparison. Through the above several comparative experiments, Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm has indeed demonstrated its strong competitiveness. Finally, we apply it to Capacitated Vehicle Routing Problem. Through comparing with the contrast algorithms, it is confirmed that Quasi-affine Transformation evolutionary for the Fruit fly Optimization Algorithm can achieve better vehicle routes planning.
International Journa... arrow_drop_down International Journal of Distributed Sensor NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15501477211073037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Distributed Sensor NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15501477211073037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Shu-Chuan Chu; Shu-Chuan Chu; Jeng-Shyang Pan; Pei Hu;Abstract Inspired by migratory graying, Pan et al. proposed the fish migration optimization (FMO) algorithm. It integrates the models of migration and swim into the optimization process. This paper firstly proposes a binary version of FMO, called BFMO. In order to improve the search ability of BFMO, ABFMO is introduced to solve the problems of stagnation and falling into local traps. The transfer function is responsible for mapping the continuous search space to the binary space. It plays a critical factor in the binary meta-heuristics. This paper brings a new transfer function and compares it with the transfer functions used by BPSO, BGSA and BGWO. Experiments prove that the new transfer function has realized good results in the solving quality. Unit commitment (UC) is a NP-hard binary optimization problem. BFMO and ABFMO are tested with the IEEE benchmark systems consisting of various generating units with 24-h demand horizon. The effectivenesses of BFMO and ABFMO are compared with seven binary evolutionary algorithms. The simulation results and non-parametric tests verify that they achieve great performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Pei Hu; Jeng-Shyang Pan; Shu-Chuan Chu; Qing-Wei Chai; Tao Liu; Zhong-Cui Li;doi: 10.3390/app9214514
Two new hybrid algorithms are proposed to improve the performances of the meta-heuristic optimization algorithms, namely the Grey Wolf Optimizer (GWO) and Shuffled Frog Leaping Algorithm (SFLA). Firstly, it advances the hierarchy and position updating of the mathematical model of GWO, and then the SGWO algorithm is proposed based on the advantages of SFLA and GWO. It not only improves the ability of local search, but also speeds up the global convergence. Secondly, the SGWOD algorithm based on SGWO is proposed by using the benefit of differential evolution strategy. Through the experiments of the 29 benchmark functions, which are composed of the functions of unimodal, multimodal, fixed-dimension and composite multimodal, the performances of the new algorithms are better than that of GWO, SFLA and GWO-DE, and they greatly balances the exploration and exploitation. The proposed SGWO and SGWOD algorithms are also applied to the prediction model based on the neural network. Experimental results show the usefulness for forecasting the power daily load.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4514/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4514/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Zhi-Gang Du; Jeng-Shyang Pan; Shu-Chuan Chu; Han-Jiang Luo; Pei Hu;QUasi-Affine TRansformation Evolutionary algorithm (QUATRE) is a new optimization algorithm based on population for complex multiple real parameter optimization problems in real world. In this paper, a novel multi-group multi-choice communication strategy algorithm for QUasi-Affine TRansformation Evolutionary (MM-QUATRE) algorithm is proposed to solve the disadvantage that the original QUATRE is always easily to fall into local optimization in the strategy of updating bad nodes with multiple groups and multiple choices. We compared it with other intelligent algorithms, the most advanced PSO variant, parallel PSO (P-PSO) variant, native QUATRE and parallel QUATRE (P-PSO) under CEC2013 large-scale optimization test suite. Thus, the performance of MM-QUATRE was verified. The conclusion that the MM-QUATRE algorithm is superior to other intelligent algorithms is proved by the experimental results. In addition, the application results of MM-QUATRE algorithm (MM-QUATRE-RSSI) based on RSSI in WSN node localization were analyzed and studied. The results appear that this method has higher localization accuracy than other similar algorithms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2964783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.2964783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Authors: Jeng-Shyang Pan; Pei Hu; Shu-Chuan Chu;doi: 10.3390/pr7110845
Wind and other renewable energy protects the ecological environment and improves economic efficiency. However, it is difficult to accurately predict wind power because of the randomness and volatility of wind. This paper proposes a new parallel heterogeneous model to predict the wind power. Parallel meta-heuristic saves computation time and improves solution quality. Four communication strategies, which include ranking, combination, dynamic change and hybrid, are introduced to balance exploration and exploitation. The dynamic change strategy is to dynamically increase or decrease the members of subgroup to keep the diversity of the population. The benchmark functions show that the algorithms have excellent performance in exploration and exploitation. In the end, they are applied to successfully realize the prediction for wind power by training the parameters of the neural network.
Processes arrow_drop_down ProcessesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2227-9717/7/11/845/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr7110845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2227-9717/7/11/845/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr7110845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu