- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV I.I. Tyukhov; M. V. Kirichenko; K.S. Klepikova; G. S. Khrypunov; V. R. Kopach; V.M. Lyubov; N. P. Klochko;Vertical multijunction (VMJ) silicon solar cells (SC) are considered the most preferred among all known single-crystal ones for using in various photovoltaic systems under conditions of highly concentrated sunlight. The techniques of ultrasound assisted nickel plating (USNiP) of mirror polished silicon wafers and their subsequent vacuum annealing for VMJ SC ohmic contacts creating were tested by X-ray diffractometry, scanning electron microscopy and dark current–voltage characteristics. The feasibility of utilizing nickel electroplating in the sulfamate electrolyte for the NiSi ohmic contact made on the mirror polished silicon wafers with n+–p junctions on both sides have been experimentally confirmed. Ultrasound assistance of the nickel plating insured the enhancement of NiSi adhesion and improving the quality of the ohmic contacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV V.M. Lyubov; S.I. Petrushenko; M. V. Kirichenko; S.V. Dukarov; I. V. Khrypunova; K.S. Klepikova; A.L. Khrypunova; D.O. Zhadan; V. R. Kopach; N. P. Klochko; I.I. Tyukhov; D. S. Sofronov; V. V. Starikov;Abstract In this work we developed and successfully tested a new design of semi-transparent solar thermoelectric nanogenerator (NG) based on the pulsed electrodeposited array of ZnO nanorods on transparent conducting fluorine doped tin oxide (FTO) substrate. An operation of this NG caused by a distinguishable temperature gradient between 1-D ZnO array and uncoated FTO that spontaneously created under heating of ZnO/FTO composition, including under the influence of sunlight. The developed NG combines benefits of low thermal emittance of FTO and ZnO coatings with TE technology for the harvesting of photo-thermal energy of outdoor sunlight by the windows themselves to produce electricity. The network of such NGs can be integrated harmoniously into buildings without affecting the overall aesthetics and serve as a source of electricity sufficiently high to make sensors entirely autonomous in energy by the harvesting solar near-infrared radiation and heat from ambient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV K.S. Klepikova; I.I. Tyukhov; V. R. Kopach; V.M. Lyubov; S.V. Dukarov; N. P. Klochko; D.O. Zhadan; O. V. Yashchenko; A.L. Khrypunova; V. A. Barbash; S.I. Petrushenko;Abstract In this work, we used solar energy converted via photosynthesis into chemical energy of the biomass of the fast-growing perennial herb Miscanthus × giganteus for the manufacture of nanocellulose (NC) films, which are biodegradable alternative to common petroleum-based polymer substrates used in flexible electronics. To create the NC substrates, we applied an environmentally friendly method of organosolv delignification of plant raw materials carried out at a low temperature and in a relatively short time. Then by means of the low-temperature cheap and scalable method Successive Ionic Layer Adsorption and Reaction (SILAR) we deposited copper iodide (CuI) film of 0.72 µm thickness on both sides of the 12 µm thick NC substrate, and thus obtained light-weight and flexible biodegradable nontoxic thermoelectric material CuI/NC. Crystal structure, morphology, chemical composition, and optical, electrical and thermoelectric properties of the CuI/NC have been researched. Studies have shown that nanostructured p-type semiconductor CuI film in the CuI/NC TE material is quite dense and completely covers the NC surface. It has typical optical direct band gap ≈ 3.0 eV, is single-phase γ-CuI with crystallite sizes in the 19–25 nm range, with moderate dislocation density of (1.6–2.8) × 1015 lines/m2, and tolerable microstrains e of (4–9) × 10−3 a.u. The determined value of the Seebeck coefficient S is ~228 μV K−1, at that, S is constant in the temperature range 290–335 K. Together with the thermoelectric power factor ≈ 36 μW·m−1·K−2it is favorable for the use of CuI/NC as new thermoelectric material for an in-plane design of biodegradable flexible thin film thermoelectric generator (TEG). At temperature gradient of 50 K, the single p-CuI thermoelectric leg made from CuI/NC strip of 3 cm long and 0.5 cm wide generates open circuit voltage 8.4 mV, short circuit current 0.7 µA and maximum output power 1.5 nW. It corresponds to the output power density 10 µW/m2, and thus confirms the suitability of CuI/NC to obtain electricity by the harvesting the waste environmental heat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.02.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.02.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV V. R. Kopach; R. V. Zaitsev; N. P. Klochko; G. S. Khrypunov; I.I. Tyukhov; K.S. Klepikova; M. V. Kirichenko; V.M. Lyubov; V. E. Korsun; A. V. Kopach;Abstract The work is devoted to the creation and research of solar active Ag/ZnO nanostructured arrays obtained by a combination of electrochemical and chemical methods. In order to enhance a solar activity of the electrodeposited in a pulsed mode nanostructured zinc oxide arrays and Ag/ZnO nanocomposites thereon we analyzed morphology, structure, electrical, electronic and optical properties of the electroplated 1-D ZnO as well as Ag nanoparticles, deposited from silver sol and Ag/ZnO nanocomposites formed by applying Ag nanoparticles to the ZnO surface. The investigated electrical and electronic parameters of ZnO and Ag/ZnO, which we obtained from their current–voltage and capacitance–voltage characteristics, are the electrical resistivity ρ , the height φ of the Schottky barriers in the electron depletion regions, the concentration of the fully ionized donor impurity N d , the density N SS of surface states and the width of the electron depletion region ω . The improved UV sensitivity of the electrodeposited in the pulsed mode 1-D ZnO and enhanced solar activity of Ag/ZnO were valued by dark and light current–voltage characteristics and through their temporal response curves under the influence of UV and visible sunlight. Analysis of electronic and electrical parameters, response and recovery performance of the obtained 1-D ZnO arrays and Ag/ZnO nanocomposites thereon let us to select the optimum manufacturing conditions for the creation of solar active plasmonic Ag/ZnO nanostructured arrays with high photosensitivity, fast response and reset times, and reproducible characteristics. So, our studies have allowed the development of a new solar active Ag/ZnO material for photocatalytic oxidation–reduction processes that can be used as photoelectrode for photocatalytic degradation of organic contaminations or for green hydrogen production by water splitting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV V.M. Lyubov; S.I. Petrushenko; N. P. Klochko; I.I. Tyukhov; D.O. Zhadan; S.V. Dukarov; M. V. Kirichenko; K.S. Klepikova; A.L. Khrypunova; G. S. Khrypunov; V. R. Kopach;Abstract Wide bandgap inorganic metal oxide heterojunctions p-NiO/n-ZnO have been prepared by two low temperature solution growth techniques. Namely, one-dimensional ZnO nanostructure arrays electrodeposited in a pulsed mode, and nanocrystalline NiO films synthesized via Successive Ionic Layer Adsorption and Reaction (SILAR). The crystal structure, morphology, and optical properties of NiO films and NiO/ZnO heterostructures were investigated both before and after annealing in air. The analysis of the dark current vs. voltage characteristics and temporal response curves of the NiO films and corresponding NiO/ZnO heterostructures have shown the promise of their use in the effective UV-photodetectors. Poor photovoltaic characteristics of the test samples on the base of obtained NiO/ZnO heterostructures probably associated with their not quite optimal design, and with too large series resistances and diode ideality factors of the manufactured p-NiO/n-ZnO heterojunctions, that will be corrected by scrutinizing the defects in the metal oxides and through the improvement of the NiO/ZnO heterostructure design. Solving these problems will provide the effective application of the wide bandgap metal oxide NiO/ZnO heterostructures prepared by low temperature solution growth in the UV-active semi-transparent solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.01.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.01.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV V. R. Kopach; K.S. Klepikova; E. E. Melnychuk; Y.O. Myagchenko; A. V. Kopach; G. S. Khrypunov; V.M. Lyubov; N. P. Klochko; I.I. Tyukhov;Abstract For a development of base layers for promising solar cells with extremely thin absorbers (ETA) low cost electrodeposition methods for sequential large-scale production of one-dimensional ZnO nanostructures and Se thin films with little material waste were investigated. Research of structure and optical properties of Se and ZnO have allowed us to choose electrolytes and modes in which electrodeposition of selenium was not accompanied by ZnO destruction. It was revealed that annealing of ZnO/Se samples using a halogen lamp provides conversion of amorphous selenious films into suitable for solar cells gray nanocrystalline hexagonal Se without ZnO degradation and thus enables the formation of bases of ETA solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV N.P. Klochko; V.A. Barbash; K.S. Klepikova; V.R. Kopach; I.I. Tyukhov; O.V. Yashchenko; D.O. Zhadan; S.I. Petrushenko; S.V. Dukarov; V.M. Sukhov; A.L. Khrypunova;Abstract In this work we present utilization of solar energy for a creation of biocompatible, biodegradable, and renewable thin film transparent materials that can protect against overabundant ultraviolet (UV) radiation and high energy visible (HEV) light of solar spectrum. From biomass of herbaceous plants Miscanthus × giganteus and Phragmites australis we obtained nanocellulose suspensions NCm through acid hydrolysis and NCp through TEMPO oxidation, respectively. These suspensions transformed into corresponding transparent flexible NCm and NCp nanocellulose films and used as substrates for 0.17 – 0.23 µm thick nanostructured layers of wide band gap semiconductor CuI deposited via wet chemical method Successive Ionic Layer Adsorption and Reaction (SILAR) to obtain promising visibly transparent UV- and HEV-shielding materials CuI/NCm and CuI/NCp. Under this investigation, we compare UV- and HEV-shielding properties of transparent NCm, CuI/NCm, NCp, and CuI/NCp flexible samples depending on structure, surface morphology, chemical composition, optical properties, and thickness. It is shown that the best CuI/NCp sample with 0.23 µm thick CuI film and 8 µm thick NCp substrate has optical transmittance up to 82% for visible light at wavelengths above 500 nm, blocks 65% of high-energy visible radiation, and has excellent sun protection factor (SPF = 112).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV D.O. Zhadan; K.S. Klepikova; S.V. Dukarov; S.I. Petrushenko; I.I. Tyukhov; M. V. Kirichenko; A.L. Khrypunova; N. P. Klochko; V. R. Kopach; V.M. Lyubov; G. S. Khrypunov;Abstract In this work by means studying the crystal structure, optical, electrical, and thermoelectric properties of chip, available and safe for the environment copper iodide CuI, zinc oxide ZnO and indium-doped zinc oxide ZnO:In films we have developed and improved low temperature solution growth Successive Ionic Layer Adsorption and Reaction (SILAR) technique, which allows to deposit these materials over large areas. Output thermoelectric parameters were analyzed for several single p-CuI, n-ZnO and n-ZnO:In thin film thermolegs. The possibility of combining of the obtained p-CuI and n-ZnO:In thin film thermolegs into a thermocouple is shown for the use in new semitransparent planar solar thermoelectric generator working at near-room temperatures through harvesting near-infrared solar light as an energy source to supply electric power to the wireless sensors and microscale devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV K.S. Klepikova; A. V. Kopach; I.I. Tyukhov; E. I. Sokol; N. P. Klochko; G. S. Khrypunov; V.M. Lyubov; Y.O. Myagchenko; E. E. Melnychuk; O.V. Momotenko; V. R. Kopach;Abstract Parameters of rectangular potential pulse electrodeposition which have allowed the obtaining of near-stoichiometric copper indium diselenide layers were determined by means of energy-dispersive X-ray spectroscopy, scanning electron microscopy and the film resistivity measurements. Studies of effects of the pulse electrodeposition modes on structural and substructural parameters, morphology and optical properties of zinc oxide arrays allowed creation of hierarchical nanostructures with large specific surface areas suitable for dye-sensitized solar cells and organic photovoltaic devices. Optimization of pulse electrodeposition modes by means X-ray diffractometry, optical spectrophotometry and atomic force microscopy allowed adjusting sizes of parabolic nipples for creating antireflective moth-eye structure suitable for use in photovoltaic devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV I.I. Tyukhov; M. V. Kirichenko; K.S. Klepikova; G. S. Khrypunov; V. R. Kopach; V.M. Lyubov; N. P. Klochko;Vertical multijunction (VMJ) silicon solar cells (SC) are considered the most preferred among all known single-crystal ones for using in various photovoltaic systems under conditions of highly concentrated sunlight. The techniques of ultrasound assisted nickel plating (USNiP) of mirror polished silicon wafers and their subsequent vacuum annealing for VMJ SC ohmic contacts creating were tested by X-ray diffractometry, scanning electron microscopy and dark current–voltage characteristics. The feasibility of utilizing nickel electroplating in the sulfamate electrolyte for the NiSi ohmic contact made on the mirror polished silicon wafers with n+–p junctions on both sides have been experimentally confirmed. Ultrasound assistance of the nickel plating insured the enhancement of NiSi adhesion and improving the quality of the ohmic contacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV V.M. Lyubov; S.I. Petrushenko; M. V. Kirichenko; S.V. Dukarov; I. V. Khrypunova; K.S. Klepikova; A.L. Khrypunova; D.O. Zhadan; V. R. Kopach; N. P. Klochko; I.I. Tyukhov; D. S. Sofronov; V. V. Starikov;Abstract In this work we developed and successfully tested a new design of semi-transparent solar thermoelectric nanogenerator (NG) based on the pulsed electrodeposited array of ZnO nanorods on transparent conducting fluorine doped tin oxide (FTO) substrate. An operation of this NG caused by a distinguishable temperature gradient between 1-D ZnO array and uncoated FTO that spontaneously created under heating of ZnO/FTO composition, including under the influence of sunlight. The developed NG combines benefits of low thermal emittance of FTO and ZnO coatings with TE technology for the harvesting of photo-thermal energy of outdoor sunlight by the windows themselves to produce electricity. The network of such NGs can be integrated harmoniously into buildings without affecting the overall aesthetics and serve as a source of electricity sufficiently high to make sensors entirely autonomous in energy by the harvesting solar near-infrared radiation and heat from ambient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.04.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV K.S. Klepikova; I.I. Tyukhov; V. R. Kopach; V.M. Lyubov; S.V. Dukarov; N. P. Klochko; D.O. Zhadan; O. V. Yashchenko; A.L. Khrypunova; V. A. Barbash; S.I. Petrushenko;Abstract In this work, we used solar energy converted via photosynthesis into chemical energy of the biomass of the fast-growing perennial herb Miscanthus × giganteus for the manufacture of nanocellulose (NC) films, which are biodegradable alternative to common petroleum-based polymer substrates used in flexible electronics. To create the NC substrates, we applied an environmentally friendly method of organosolv delignification of plant raw materials carried out at a low temperature and in a relatively short time. Then by means of the low-temperature cheap and scalable method Successive Ionic Layer Adsorption and Reaction (SILAR) we deposited copper iodide (CuI) film of 0.72 µm thickness on both sides of the 12 µm thick NC substrate, and thus obtained light-weight and flexible biodegradable nontoxic thermoelectric material CuI/NC. Crystal structure, morphology, chemical composition, and optical, electrical and thermoelectric properties of the CuI/NC have been researched. Studies have shown that nanostructured p-type semiconductor CuI film in the CuI/NC TE material is quite dense and completely covers the NC surface. It has typical optical direct band gap ≈ 3.0 eV, is single-phase γ-CuI with crystallite sizes in the 19–25 nm range, with moderate dislocation density of (1.6–2.8) × 1015 lines/m2, and tolerable microstrains e of (4–9) × 10−3 a.u. The determined value of the Seebeck coefficient S is ~228 μV K−1, at that, S is constant in the temperature range 290–335 K. Together with the thermoelectric power factor ≈ 36 μW·m−1·K−2it is favorable for the use of CuI/NC as new thermoelectric material for an in-plane design of biodegradable flexible thin film thermoelectric generator (TEG). At temperature gradient of 50 K, the single p-CuI thermoelectric leg made from CuI/NC strip of 3 cm long and 0.5 cm wide generates open circuit voltage 8.4 mV, short circuit current 0.7 µA and maximum output power 1.5 nW. It corresponds to the output power density 10 µW/m2, and thus confirms the suitability of CuI/NC to obtain electricity by the harvesting the waste environmental heat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.02.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.02.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV V. R. Kopach; R. V. Zaitsev; N. P. Klochko; G. S. Khrypunov; I.I. Tyukhov; K.S. Klepikova; M. V. Kirichenko; V.M. Lyubov; V. E. Korsun; A. V. Kopach;Abstract The work is devoted to the creation and research of solar active Ag/ZnO nanostructured arrays obtained by a combination of electrochemical and chemical methods. In order to enhance a solar activity of the electrodeposited in a pulsed mode nanostructured zinc oxide arrays and Ag/ZnO nanocomposites thereon we analyzed morphology, structure, electrical, electronic and optical properties of the electroplated 1-D ZnO as well as Ag nanoparticles, deposited from silver sol and Ag/ZnO nanocomposites formed by applying Ag nanoparticles to the ZnO surface. The investigated electrical and electronic parameters of ZnO and Ag/ZnO, which we obtained from their current–voltage and capacitance–voltage characteristics, are the electrical resistivity ρ , the height φ of the Schottky barriers in the electron depletion regions, the concentration of the fully ionized donor impurity N d , the density N SS of surface states and the width of the electron depletion region ω . The improved UV sensitivity of the electrodeposited in the pulsed mode 1-D ZnO and enhanced solar activity of Ag/ZnO were valued by dark and light current–voltage characteristics and through their temporal response curves under the influence of UV and visible sunlight. Analysis of electronic and electrical parameters, response and recovery performance of the obtained 1-D ZnO arrays and Ag/ZnO nanocomposites thereon let us to select the optimum manufacturing conditions for the creation of solar active plasmonic Ag/ZnO nanostructured arrays with high photosensitivity, fast response and reset times, and reproducible characteristics. So, our studies have allowed the development of a new solar active Ag/ZnO material for photocatalytic oxidation–reduction processes that can be used as photoelectrode for photocatalytic degradation of organic contaminations or for green hydrogen production by water splitting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.06.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV V.M. Lyubov; S.I. Petrushenko; N. P. Klochko; I.I. Tyukhov; D.O. Zhadan; S.V. Dukarov; M. V. Kirichenko; K.S. Klepikova; A.L. Khrypunova; G. S. Khrypunov; V. R. Kopach;Abstract Wide bandgap inorganic metal oxide heterojunctions p-NiO/n-ZnO have been prepared by two low temperature solution growth techniques. Namely, one-dimensional ZnO nanostructure arrays electrodeposited in a pulsed mode, and nanocrystalline NiO films synthesized via Successive Ionic Layer Adsorption and Reaction (SILAR). The crystal structure, morphology, and optical properties of NiO films and NiO/ZnO heterostructures were investigated both before and after annealing in air. The analysis of the dark current vs. voltage characteristics and temporal response curves of the NiO films and corresponding NiO/ZnO heterostructures have shown the promise of their use in the effective UV-photodetectors. Poor photovoltaic characteristics of the test samples on the base of obtained NiO/ZnO heterostructures probably associated with their not quite optimal design, and with too large series resistances and diode ideality factors of the manufactured p-NiO/n-ZnO heterojunctions, that will be corrected by scrutinizing the defects in the metal oxides and through the improvement of the NiO/ZnO heterostructure design. Solving these problems will provide the effective application of the wide bandgap metal oxide NiO/ZnO heterostructures prepared by low temperature solution growth in the UV-active semi-transparent solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.01.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.01.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV V. R. Kopach; K.S. Klepikova; E. E. Melnychuk; Y.O. Myagchenko; A. V. Kopach; G. S. Khrypunov; V.M. Lyubov; N. P. Klochko; I.I. Tyukhov;Abstract For a development of base layers for promising solar cells with extremely thin absorbers (ETA) low cost electrodeposition methods for sequential large-scale production of one-dimensional ZnO nanostructures and Se thin films with little material waste were investigated. Research of structure and optical properties of Se and ZnO have allowed us to choose electrolytes and modes in which electrodeposition of selenium was not accompanied by ZnO destruction. It was revealed that annealing of ZnO/Se samples using a halogen lamp provides conversion of amorphous selenious films into suitable for solar cells gray nanocrystalline hexagonal Se without ZnO degradation and thus enables the formation of bases of ETA solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV N.P. Klochko; V.A. Barbash; K.S. Klepikova; V.R. Kopach; I.I. Tyukhov; O.V. Yashchenko; D.O. Zhadan; S.I. Petrushenko; S.V. Dukarov; V.M. Sukhov; A.L. Khrypunova;Abstract In this work we present utilization of solar energy for a creation of biocompatible, biodegradable, and renewable thin film transparent materials that can protect against overabundant ultraviolet (UV) radiation and high energy visible (HEV) light of solar spectrum. From biomass of herbaceous plants Miscanthus × giganteus and Phragmites australis we obtained nanocellulose suspensions NCm through acid hydrolysis and NCp through TEMPO oxidation, respectively. These suspensions transformed into corresponding transparent flexible NCm and NCp nanocellulose films and used as substrates for 0.17 – 0.23 µm thick nanostructured layers of wide band gap semiconductor CuI deposited via wet chemical method Successive Ionic Layer Adsorption and Reaction (SILAR) to obtain promising visibly transparent UV- and HEV-shielding materials CuI/NCm and CuI/NCp. Under this investigation, we compare UV- and HEV-shielding properties of transparent NCm, CuI/NCm, NCp, and CuI/NCp flexible samples depending on structure, surface morphology, chemical composition, optical properties, and thickness. It is shown that the best CuI/NCp sample with 0.23 µm thick CuI film and 8 µm thick NCp substrate has optical transmittance up to 82% for visible light at wavelengths above 500 nm, blocks 65% of high-energy visible radiation, and has excellent sun protection factor (SPF = 112).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV D.O. Zhadan; K.S. Klepikova; S.V. Dukarov; S.I. Petrushenko; I.I. Tyukhov; M. V. Kirichenko; A.L. Khrypunova; N. P. Klochko; V. R. Kopach; V.M. Lyubov; G. S. Khrypunov;Abstract In this work by means studying the crystal structure, optical, electrical, and thermoelectric properties of chip, available and safe for the environment copper iodide CuI, zinc oxide ZnO and indium-doped zinc oxide ZnO:In films we have developed and improved low temperature solution growth Successive Ionic Layer Adsorption and Reaction (SILAR) technique, which allows to deposit these materials over large areas. Output thermoelectric parameters were analyzed for several single p-CuI, n-ZnO and n-ZnO:In thin film thermolegs. The possibility of combining of the obtained p-CuI and n-ZnO:In thin film thermolegs into a thermocouple is shown for the use in new semitransparent planar solar thermoelectric generator working at near-room temperatures through harvesting near-infrared solar light as an energy source to supply electric power to the wireless sensors and microscale devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV K.S. Klepikova; A. V. Kopach; I.I. Tyukhov; E. I. Sokol; N. P. Klochko; G. S. Khrypunov; V.M. Lyubov; Y.O. Myagchenko; E. E. Melnychuk; O.V. Momotenko; V. R. Kopach;Abstract Parameters of rectangular potential pulse electrodeposition which have allowed the obtaining of near-stoichiometric copper indium diselenide layers were determined by means of energy-dispersive X-ray spectroscopy, scanning electron microscopy and the film resistivity measurements. Studies of effects of the pulse electrodeposition modes on structural and substructural parameters, morphology and optical properties of zinc oxide arrays allowed creation of hierarchical nanostructures with large specific surface areas suitable for dye-sensitized solar cells and organic photovoltaic devices. Optimization of pulse electrodeposition modes by means X-ray diffractometry, optical spectrophotometry and atomic force microscopy allowed adjusting sizes of parabolic nipples for creating antireflective moth-eye structure suitable for use in photovoltaic devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu