Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; +1 Authors

    A Wireless Sensor Network (WSN) is comprised of a number of sensor nodes (SNs) that are randomly placed in an open, harsh environment for many applications. Due to the resource-constrained nature of SNs and hostile deployment environments, energy efficiency and security are considered two key factors in designing WSN routing protocols. This paper proposes an Energy Efficient Secure Multipath (EESM) routing protocol to securely construct efficient routes and transmit data packets between SNs and the base station (BS). EESM achieves energy efficiency through minimal task allocation among SNs whereas all computation-intensive tasks such as network information collection, routing table generation, and network maintenance are performed by the BS. The proposed protocol incorporates lightweight security mechanisms including a one-way hash chain, message authentication code, encryption, and clique-based coordinator selection and monitoring schemes to defend against numerous security attacks. Simulation results show that EESM can successfully detect and protect the network against various security attacks such as replay attacks, sybil attacks, sinkhole attacks, spoofing attacks, compromised node attacks, and so on. In terms of energy efficiency, the proposed protocol achieves an up to 37% increase in network lifetime and a 6% increase in throughput over Secure and Energy Efficient Multipath (SEEM) routing, Secure and Reliable Multipath Routing (SRMR), and Reliable and Multipath Encounter Routing (RMER) protocols. The paper implements the protocol in a real environment using Arduino motes to analyze security overheads and network setup time.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computer Networks
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    ACU Research Bank
    Article . 2023
    Data sources: ACU Research Bank
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    21
    citations21
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Computer Networks
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      ACU Research Bank
      Article . 2023
      Data sources: ACU Research Bank
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Babu Pillai; Kamanashis Biswas; Vallipuram Muthukkumarasamy;

    Abstract The blockchain is an emerging technology which has the potential to improve many information systems. In this regard, the applications and the platform they are built on must be able to connect and communicate with each other. However, the current blockchain platforms have several limitations, such as lack of interoperability among different systems. The existing platforms of blockchain applications operate only within their own networks. Even though the underlying technology is similar, it relies on centralized third-party mediators to exchange or retrieve information from other blockchain networks. The current third-party intermediaries establish trust and security by preserving a centralized ledger to track ‘account balances’ and vouch for a transaction’s authenticity. The inability for independent blockchains to communicate with one another is an inherent problem in the decentralized systems. Lack of appropriate inter-blockchain communication puts a strain on the mainstream adoption of blockchain. It is evident that blockchain technology has the potential to become a suitable solution for some systems if it can scale and is able to cross communicate with other systems. For the multisystem blockchain concept to become a reality, a mechanism is required that would connect and communicate with multiple entities’ blockchain systems in a distributed fashion (without any intermediary), while maintaining the property of trust and integrity built by individual blockchains. In this article, we propose a mechanism that provides cross-chain interoperability using transactions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Knowledge Engineering Review
    Article . 2020 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    ACU Research Bank
    Article . 2020
    Data sources: ACU Research Bank
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    66
    citations66
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Knowledge Engineering Review
      Article . 2020 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      ACU Research Bank
      Article . 2020
      Data sources: ACU Research Bank
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mohammad Jabed M. Chowdhury; Muhammad Usman; Md Sadek Ferdous; Niaz Chowdhury; +3 Authors

    Peer-to-Peer (P2P) energy trading platforms are being actively designed, tested and operated by engineers, power distribution companies and prosumers. The assurance of the accountability of the conduct of different stakeholders through a robust trust management mechanism is imperative in such platforms. The usage of blockchain, as an underlying technology, can ensure numerous properties such as immutability, transparency and traceable execution of transactions, in addition to ensuring trust establishment among different entities of the system. Few blockchain-based decentralized energy trading platforms have been designed in the literature to build trust about the platform and among prosumers. However, none of these proposals have considered human-in-the-loop in the trust establishment process. Moreover, these solutions have considered trust only at a particular layer of blockchain, such as at the application or consensus layer. To bridge this gap, this paper presents a novel cross-layer trust-based consensus protocol that considers human-in-the-loop and employs fuzzy logic to address the issue of vagueness of trust values by offering human interpretable trust level. The experiment results demonstrate the efficiency and effectiveness of our proposed protocol in comparison to established consensus mechanisms. The analysis also shows the protocol is immune against selfish mining, 51% and Sybil attacks.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/jiot.2...
    Article . 2022 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    https://dx.doi.org/10.26181/61...
    Other literature type . 2021
    Data sources: Datacite
    ACU Research Bank
    Article . 2022
    Data sources: ACU Research Bank
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; +1 Authors

    A Wireless Sensor Network (WSN) is comprised of a number of sensor nodes (SNs) that are randomly placed in an open, harsh environment for many applications. Due to the resource-constrained nature of SNs and hostile deployment environments, energy efficiency and security are considered two key factors in designing WSN routing protocols. This paper proposes an Energy Efficient Secure Multipath (EESM) routing protocol to securely construct efficient routes and transmit data packets between SNs and the base station (BS). EESM achieves energy efficiency through minimal task allocation among SNs whereas all computation-intensive tasks such as network information collection, routing table generation, and network maintenance are performed by the BS. The proposed protocol incorporates lightweight security mechanisms including a one-way hash chain, message authentication code, encryption, and clique-based coordinator selection and monitoring schemes to defend against numerous security attacks. Simulation results show that EESM can successfully detect and protect the network against various security attacks such as replay attacks, sybil attacks, sinkhole attacks, spoofing attacks, compromised node attacks, and so on. In terms of energy efficiency, the proposed protocol achieves an up to 37% increase in network lifetime and a 6% increase in throughput over Secure and Energy Efficient Multipath (SEEM) routing, Secure and Reliable Multipath Routing (SRMR), and Reliable and Multipath Encounter Routing (RMER) protocols. The paper implements the protocol in a real environment using Arduino motes to analyze security overheads and network setup time.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computer Networks
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    ACU Research Bank
    Article . 2023
    Data sources: ACU Research Bank
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    21
    citations21
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Computer Networks
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      ACU Research Bank
      Article . 2023
      Data sources: ACU Research Bank
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Babu Pillai; Kamanashis Biswas; Vallipuram Muthukkumarasamy;

    Abstract The blockchain is an emerging technology which has the potential to improve many information systems. In this regard, the applications and the platform they are built on must be able to connect and communicate with each other. However, the current blockchain platforms have several limitations, such as lack of interoperability among different systems. The existing platforms of blockchain applications operate only within their own networks. Even though the underlying technology is similar, it relies on centralized third-party mediators to exchange or retrieve information from other blockchain networks. The current third-party intermediaries establish trust and security by preserving a centralized ledger to track ‘account balances’ and vouch for a transaction’s authenticity. The inability for independent blockchains to communicate with one another is an inherent problem in the decentralized systems. Lack of appropriate inter-blockchain communication puts a strain on the mainstream adoption of blockchain. It is evident that blockchain technology has the potential to become a suitable solution for some systems if it can scale and is able to cross communicate with other systems. For the multisystem blockchain concept to become a reality, a mechanism is required that would connect and communicate with multiple entities’ blockchain systems in a distributed fashion (without any intermediary), while maintaining the property of trust and integrity built by individual blockchains. In this article, we propose a mechanism that provides cross-chain interoperability using transactions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Knowledge Engineering Review
    Article . 2020 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    ACU Research Bank
    Article . 2020
    Data sources: ACU Research Bank
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    66
    citations66
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Knowledge Engineering Review
      Article . 2020 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      ACU Research Bank
      Article . 2020
      Data sources: ACU Research Bank
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mohammad Jabed M. Chowdhury; Muhammad Usman; Md Sadek Ferdous; Niaz Chowdhury; +3 Authors

    Peer-to-Peer (P2P) energy trading platforms are being actively designed, tested and operated by engineers, power distribution companies and prosumers. The assurance of the accountability of the conduct of different stakeholders through a robust trust management mechanism is imperative in such platforms. The usage of blockchain, as an underlying technology, can ensure numerous properties such as immutability, transparency and traceable execution of transactions, in addition to ensuring trust establishment among different entities of the system. Few blockchain-based decentralized energy trading platforms have been designed in the literature to build trust about the platform and among prosumers. However, none of these proposals have considered human-in-the-loop in the trust establishment process. Moreover, these solutions have considered trust only at a particular layer of blockchain, such as at the application or consensus layer. To bridge this gap, this paper presents a novel cross-layer trust-based consensus protocol that considers human-in-the-loop and employs fuzzy logic to address the issue of vagueness of trust values by offering human interpretable trust level. The experiment results demonstrate the efficiency and effectiveness of our proposed protocol in comparison to established consensus mechanisms. The analysis also shows the protocol is immune against selfish mining, 51% and Sybil attacks.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/jiot.2...
    Article . 2022 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    https://dx.doi.org/10.26181/61...
    Other literature type . 2021
    Data sources: Datacite
    ACU Research Bank
    Article . 2022
    Data sources: ACU Research Bank
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph