- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Informa UK Limited Zhang, Jiaqi; Zhao, Tianjie; Tan, Shurun; Rodriguez-Fernandez, Nemesio; Xue, Huazhu; Yang, Na; Kerr, Yann; Shi, Jiancheng;The two vegetation transfer parameters of [Formula: see text] (Vegetation Optical Depth,VOD) and [Formula: see text] (Omega) could vary significantly across microwave channels in terms of frequencies, polarizations, and incidence angles, and their channel-dependent characteristics have not yet been fully investigated. In this study, we investigate the channel dependence of vegetation effects on microwave emissions from soils using a higher-order vegetation radiative transfer model of Tor Vergata. Corn was selected as the subject of investigation, and a corn growth model was developed utilizing field data collected from the multifrequency and multi-angular ground-based microwave radiation experiment from the Soil Moisture Experiment in the Luan River (SMELR). Upon compilation of the simulation dataset of microwave emissions of the corn field, the effective scattering albedo across different channels were calculated using the Tor Vergata model. Results show that vertical polarization of the vegetation optical depth is more affected by incidence angle changes, while horizontal polarization exhibits lower variations in vegetation optical depth due to incidence angle adjustments. The channel dependence of vegetation optical depth can be described as the polarization dependence parameter ([Formula: see text]) and the frequency dependence parameter ([Formula: see text]). These two parameters enable the calculation of vegetation optical depth at any channel under three adjacent frequencies (L-band, C-band and X-band). The effective scattering albedo of vegetation does not vary significantly with vegetation height or angle. It primarily depends on frequency and polarization, showing an overall increasing trend with increasing frequency. The effective scattering albedo with vertical polarization is slightly higher than that with horizontal polarization at higher frequencies, while both are lower in the L-band. This investigation is helpful for understanding the vegetation effects on microwave emissions from soils, ultimately advancing the accuracy of large-scale soil moisture retrieval in vegetated areas.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04388755Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/10095020.2023.2275616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04388755Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/10095020.2023.2275616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, Spain, SwedenPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-P, ANR | TULIPEC| IMBALANCE-P ,ANR| TULIPJosep Peñuelas; Martin Brandt; Lei Fan; Jean-Pierre Wigneron; Jérôme Chave; Arnaud Mialon; Compton J. Tucker; Nemesio Rodriguez-Fernandez; Yann Kerr; Kjeld Rasmussen; Wenmin Zhang; Wenmin Zhang; Torbern Tagesson; Feng Tian; Aleixandre Verger; Cheikh Mbow; Amen Al-Yaari; Rasmus Fensholt; Laura Vang Rasmussen; Jinfeng Chang; Philippe Ciais; Guy Schurgers;pmid: 29632351
The African continent is facing one of the driest periods in the past three decades as well as continued deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for improved capabilities of monitoring large-scale aboveground carbon stock dynamics. Here we use a satellite dataset based on vegetation optical depth derived from low-frequency passive microwaves (L-VOD) to quantify annual aboveground biomass-carbon changes in sub-Saharan Africa between 2010 and 2016. L-VOD is shown not to saturate over densely vegetated areas. The overall net change in drylands (53% of the land area) was -0.05 petagrams of C per year (Pg C yr-1) associated with drying trends, and a net change of -0.02 Pg C yr-1 was observed in humid areas. These trends reflect a high inter-annual variability with a very dry year in 2015 (net change, -0.69 Pg C) with about half of the gross losses occurring in drylands. This study demonstrates, first, the applicability of L-VOD to monitor the dynamics of carbon loss and gain due to weather variations, and second, the importance of the highly dynamic and vulnerable carbon pool of dryland savannahs for the global carbon balance, despite the relatively low carbon stock per unit area.
Nature Ecology & Evo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0530-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 179 citations 179 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0530-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 Denmark, FrancePublisher:IEEE G. De Lannoy; Roberto Fernandez-Moran; Martin Brandt; Yann Kerr; Arnaud Mialon; Jan J. Quets; Thierry Pellarin; Amen Al-Yaari; Jean-Pierre Wigneron; Rasmus Fensholt; Nemesio Rodriguez-Fernandez; Lei Fan; Mohsen Ebrahimi; Feng Tian;In 2017, the new SMOS-IC retrieval product of soil moisture (SM) and L-band Vegetation Optical depth (L-VOD) was developed. This product relies on a two-parameter inversion of the L-MEB model (L-band Microwave Emission of the Biosphere) which requires little ancillary information and was found to be accurate, making it very well-suited for application in agriculture, hydrology, climate and vegetation monitoring. In this communication we present recent improvements in the SMOS-IC retrieval algorithm and recent applications using the soil moisture or VOD retrievals from the SMOS-IC data set. SMOS-IC SM is available at the French CATDS center.
https://lirias.kuleu... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2018University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss.2018.8519382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://lirias.kuleu... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2018University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss.2018.8519382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019 FrancePublisher:IEEE Bousquet, E.; Mialon, A.; Rodriguez-Fernandez, N.; Mermoz, S.; Bouvet, A.; Merlin, O.; Kerr, Y.;The vegetation optical depth measured at L-Band (LVOD) by the SMOS satellite provides a high temporal resolution information of the vegetation water content that can be linked to the total above ground biomass (AGB). Nevertheless, its coarse spatial resolution (~ 40 km) can be limiting for a number of applications. This study is devoted to the downscaling of the SMOS LVOD using high spatial resolution L-Band backscatter data from ALOS1 synthetic aperture radar. The goal is to improve the spatial resolution of the LVOD to estimate AGB at 1 km.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/igarss...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss.2019.8899268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/igarss...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss.2019.8899268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Informa UK Limited Zhang, Jiaqi; Zhao, Tianjie; Tan, Shurun; Rodriguez-Fernandez, Nemesio; Xue, Huazhu; Yang, Na; Kerr, Yann; Shi, Jiancheng;The two vegetation transfer parameters of [Formula: see text] (Vegetation Optical Depth,VOD) and [Formula: see text] (Omega) could vary significantly across microwave channels in terms of frequencies, polarizations, and incidence angles, and their channel-dependent characteristics have not yet been fully investigated. In this study, we investigate the channel dependence of vegetation effects on microwave emissions from soils using a higher-order vegetation radiative transfer model of Tor Vergata. Corn was selected as the subject of investigation, and a corn growth model was developed utilizing field data collected from the multifrequency and multi-angular ground-based microwave radiation experiment from the Soil Moisture Experiment in the Luan River (SMELR). Upon compilation of the simulation dataset of microwave emissions of the corn field, the effective scattering albedo across different channels were calculated using the Tor Vergata model. Results show that vertical polarization of the vegetation optical depth is more affected by incidence angle changes, while horizontal polarization exhibits lower variations in vegetation optical depth due to incidence angle adjustments. The channel dependence of vegetation optical depth can be described as the polarization dependence parameter ([Formula: see text]) and the frequency dependence parameter ([Formula: see text]). These two parameters enable the calculation of vegetation optical depth at any channel under three adjacent frequencies (L-band, C-band and X-band). The effective scattering albedo of vegetation does not vary significantly with vegetation height or angle. It primarily depends on frequency and polarization, showing an overall increasing trend with increasing frequency. The effective scattering albedo with vertical polarization is slightly higher than that with horizontal polarization at higher frequencies, while both are lower in the L-band. This investigation is helpful for understanding the vegetation effects on microwave emissions from soils, ultimately advancing the accuracy of large-scale soil moisture retrieval in vegetated areas.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04388755Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/10095020.2023.2275616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04388755Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/10095020.2023.2275616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, Spain, SwedenPublisher:Springer Science and Business Media LLC Funded by:EC | IMBALANCE-P, ANR | TULIPEC| IMBALANCE-P ,ANR| TULIPJosep Peñuelas; Martin Brandt; Lei Fan; Jean-Pierre Wigneron; Jérôme Chave; Arnaud Mialon; Compton J. Tucker; Nemesio Rodriguez-Fernandez; Yann Kerr; Kjeld Rasmussen; Wenmin Zhang; Wenmin Zhang; Torbern Tagesson; Feng Tian; Aleixandre Verger; Cheikh Mbow; Amen Al-Yaari; Rasmus Fensholt; Laura Vang Rasmussen; Jinfeng Chang; Philippe Ciais; Guy Schurgers;pmid: 29632351
The African continent is facing one of the driest periods in the past three decades as well as continued deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for improved capabilities of monitoring large-scale aboveground carbon stock dynamics. Here we use a satellite dataset based on vegetation optical depth derived from low-frequency passive microwaves (L-VOD) to quantify annual aboveground biomass-carbon changes in sub-Saharan Africa between 2010 and 2016. L-VOD is shown not to saturate over densely vegetated areas. The overall net change in drylands (53% of the land area) was -0.05 petagrams of C per year (Pg C yr-1) associated with drying trends, and a net change of -0.02 Pg C yr-1 was observed in humid areas. These trends reflect a high inter-annual variability with a very dry year in 2015 (net change, -0.69 Pg C) with about half of the gross losses occurring in drylands. This study demonstrates, first, the applicability of L-VOD to monitor the dynamics of carbon loss and gain due to weather variations, and second, the importance of the highly dynamic and vulnerable carbon pool of dryland savannahs for the global carbon balance, despite the relatively low carbon stock per unit area.
Nature Ecology & Evo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0530-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 179 citations 179 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018Data sources: Diposit Digital de Documents de la UABNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/s415...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0530-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 Denmark, FrancePublisher:IEEE G. De Lannoy; Roberto Fernandez-Moran; Martin Brandt; Yann Kerr; Arnaud Mialon; Jan J. Quets; Thierry Pellarin; Amen Al-Yaari; Jean-Pierre Wigneron; Rasmus Fensholt; Nemesio Rodriguez-Fernandez; Lei Fan; Mohsen Ebrahimi; Feng Tian;In 2017, the new SMOS-IC retrieval product of soil moisture (SM) and L-band Vegetation Optical depth (L-VOD) was developed. This product relies on a two-parameter inversion of the L-MEB model (L-band Microwave Emission of the Biosphere) which requires little ancillary information and was found to be accurate, making it very well-suited for application in agriculture, hydrology, climate and vegetation monitoring. In this communication we present recent improvements in the SMOS-IC retrieval algorithm and recent applications using the soil moisture or VOD retrievals from the SMOS-IC data set. SMOS-IC SM is available at the French CATDS center.
https://lirias.kuleu... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2018University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss.2018.8519382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://lirias.kuleu... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2018University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss.2018.8519382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019 FrancePublisher:IEEE Bousquet, E.; Mialon, A.; Rodriguez-Fernandez, N.; Mermoz, S.; Bouvet, A.; Merlin, O.; Kerr, Y.;The vegetation optical depth measured at L-Band (LVOD) by the SMOS satellite provides a high temporal resolution information of the vegetation water content that can be linked to the total above ground biomass (AGB). Nevertheless, its coarse spatial resolution (~ 40 km) can be limiting for a number of applications. This study is devoted to the downscaling of the SMOS LVOD using high spatial resolution L-Band backscatter data from ALOS1 synthetic aperture radar. The goal is to improve the spatial resolution of the LVOD to estimate AGB at 1 km.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/igarss...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss.2019.8899268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/igarss...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/igarss.2019.8899268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu