- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Wiley Ann Christin Rönnberg‐Wästljung; Louis Dufour; Jie Gao; Per‐Anders Hansson; Anke Herrmann; Mohamed Jebrane; Ann‐Christine Johansson; Saurav Kalita; Roger Molinder; Nils‐Erik Nordh; Jonas A. Ohlsson; Volkmar Passoth; Mats Sandgren; Anna Schnürer; Andong Shi; Nasko Terziev; Geoffrey Daniel; Martin Weih;doi: 10.1111/gcbb.12991
AbstractBioenergy will be one of the most important renewable energy sources in the conversion from fossil fuels to bio‐based products. Short rotation coppice Salix could be a key player in this conversion since Salix has rapid growth, positive energy balance, easy to manage cultivation system with vegetative propagation of plant material and multiple harvests from the same plantation. The aim of the present paper is to provide an overview of the main challenges and key issues in willow genetic improvement toward sustainable biofuel value chains. Primarily based on results from the research project “Optimized Utilization of Salix” (OPTUS), the influence of Salix wood quality on the potential for biofuel use is discussed, followed by issues related to the conversion of Salix biomass into liquid and gaseous transportation fuels. Thereafter, the studies address genotypic influence on soil carbon sequestration in Salix plantations, as well as on soil carbon dynamics and climate change impacts. Finally, the opportunities for plant breeding are discussed using willow as a resource for sustainable biofuel production. Substantial phenotypic and genotypic variation was reported for different wood quality traits important in biological (i.e., enzymatic and anaerobic) and thermochemical conversion processes, which is a prerequisite for plant breeding. Furthermore, different Salix genotypes can affect soil carbon sequestration variably, and life cycle assessment illustrates that these differences can result in different climate mitigation potential depending on genotype. Thus, the potential of Salix plantations for sustainable biomass production and its conversion into biofuels is shown. Large genetic variation in various wood and biomass traits, important for different conversion processes and carbon sequestration, provides opportunities to enhance the sustainability of the production system via plant breeding. This includes new breeding targets in addition to traditional targets for high yield to improve biomass quality and carbon sequestration potential.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Springer Science and Business Media LLC Authors: Ann-Christin Rönnberg-Wästljung; Carolyn Glynn; Martin Weih;pmid: 15619077
Quantitative trait loci (QTL) for growth traits and water-use efficiency have been identified in two water regimes (normal and drought-treated) and for a treatment index. A tetraploid hybrid F2 population originating from a cross between a Salix dasyclados clone (SW901290) and a Salix viminalis clone ('Jorunn') was used in the study. The growth response of each individual including both above and below ground dry-matter production (i.e. shoot length, shoot diameter, aboveground and root dry weight, internode length, root dry weight/total dry weight, relative growth rate and leaf nitrogen content) was analysed in a replicated block experiment with two water treatments. A composite interval mapping approach was used to estimate number of QTL, the magnitude of the QTL and their position on genetic linkage maps. QTL specific for each treatment and for the treatment index were found, but QTL common across the treatments and the treatment index were also detected. Each QTL explained from 8% to 29% of the phenotypic variation, depending on trait and treatment. Clusters of QTL for different traits were mapped close to each other at several linkage groups, indicating either a common genetic base or tightly linked QTL. Common QTL identified between treatments and treatment index in the complex trait dry weight can be useful tools in the breeding and selection for drought stress tolerance in Salix.
Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-004-1866-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-004-1866-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | BIOENERGYEC| BIOENERGYAuthors: Andreas Bolte; Sarah Baum; Martin Weih; Martin Weih;Increasing loss of biodiversity in agricultural landscapes is often debated in the bioenergy context, especially with respect to non-traditional crops that can be grown for energy production in the future. As promising renewable energy source and additional landscape element, the potential role of short rotation coppice (SRC) plantations to biodiversity is of great interest. We studied plant species richness in eight landscapes (225 km2) containing willow and poplar SRC plantations (1,600 m2) in Sweden and Germany, and the related SRC α-diversity to species richness in the landscapes (γ-diversity). Using matrix variables, spatial analyses of SRC plantations and landscapes were performed to explain the contribution of SRC α-diversity to γ-diversity. In accordance with the mosaic concept, multiple regression analyses revealed number of habitat types as a significant predictor for species richness: the higher the habitat type number, the higher the γ-diversity and the lower the proportion of SRC plantation α-diversity to γ-diversity. SRC plantation α-diversity was 6.9 % (±1.7 % SD) of species richness on the landscape scale. The contribution of SRC plantations increased with decreasing γ-diversity. SRC plantations were dominated more by species adapted to frequent disturbances and anthropo-zoogenic impacts than surrounding landscapes. We conclude that by providing habitats for plants with different requirements, SRC α-diversity has a significant share on γ-diversity in rural areas and can promote diversity in landscapes with low habitat heterogeneity and low species pools. However, plant diversity enrichment is mainly due to additional species typically present in disturbed and anthropogenic environments.
BioEnergy Research arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2012 . Peer-reviewedLicense: CC BY NC NDGöttingen Research Online PublicationsArticle . 2018License: CC BY NC NDData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-012-9195-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BioEnergy Research arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2012 . Peer-reviewedLicense: CC BY NC NDGöttingen Research Online PublicationsArticle . 2018License: CC BY NC NDData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-012-9195-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 SwedenPublisher:Frontiers Media SA Hallingbäck, Henrik; Berlin, Sofia; Nordh, Nils-Erik; Weih, Martin; Rönnberg Wästljung, Ann-Christin;The short rotation biomass crop willow (Salix genera) has been of interest for bioenergy but recently also for biofuel production. For a faster development of new varieties molecular markers could be used as selection tool in an early stage of the breeding cycle. To identify markers associated with growth traits, genome-wide association mapping was conducted using a population of 291 Salix viminalis accessions collected across Europe and Russia and a large set of genotyping-by-sequencing markers. The accessions were vegetatively propagated and planted in replicated field experiments, one in Southern Sweden and one in Central Sweden. Phenology data, including bud burst and leaf senescence, as well as different growth traits were collected and measured repeatedly between 2010 and 2017 at both field environments. A value of the plasticity for each accession was calculated for all traits that were measured the same year in both environments as the normalized accession value in one environment subtracted by the corresponding value in the other environment. Broad-sense accession heritabilities and narrow-sense chip heritabilities ranged from 0.68 to 0.95 and 0.45 to 0.99, respectively for phenology traits and from 0.56 to 0.85 and 0.24 to 0.97 for growth traits indicating a considerable genetic component for most traits. Population structure and kinship between accessions were taken into account in the association analyses. In total, 39 marker-trait associations were found where four were specifically connected to plasticity and interestingly one particular marker was associated to several different plasticity growth traits. Otherwise association consistency was poor, possibly due to accession by environment interactions which were demonstrated by the low structure adjusted accession correlations across environments (ranging from 0.40 to 0.58). However, one marker association with biomass fresh weight was repeatedly observed in the same environment over two harvest years. For some traits where several associations were found, the markers jointly explained over 20% of the accession variation. The result from this study using a population of unrelated accessions has given useful information about marker-trait associations especially highlighting marker-plasticity associations and genotype-by-environment interactions as important factors to take account of in future strategies of Salix breeding.
Frontiers in Plant S... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2019.00753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2019.00753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:EC | Dendromass4Europe, FCT | D4EC| Dendromass4Europe ,FCT| D4Matthias Meyer; Filipa Tavares Wahren; Norbert Weber; Ronald S. Zalesny; Martin Weih;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-021-10275-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-021-10275-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Ioannis Dimitriou; Martin Weih; Theo Verwijst; Anneli Adler; Anneli Adler; Pär Aronsson;Abstract This study assessed the effects of stand structure and fertilisation with wood ash and/or sludge on wood fuel quality of Salix viminalis. The relative proportions of bark and wood in 1-, 2- and 3-year-old shoot populations were determined. The concentrations of essential elements (N, P, K) and heavy metals (Cu, Zn, Cd, Ni) in bark and wood were used to assess the wood fuel quality in harvestable shoot biomass. Controlled field experiments were conducted on two newly harvested commercial short-rotation willow coppice fields. Five treatments were applied: sewage sludge at the maximum legally permitted amount; ash; two sludge–ash mixtures supplying the maximum and twice the maximum permitted sludge–ash amount; and a control receiving mineral nutrients only. The proportion of bark in the willow stands was decreasing with the age of the shoot population. The shoot population with few large stems, compared to that with many small stems, had a lower proportion of element-rich bark in the harvestable shoot biomass, meaning better quality of the wood fuel. Overall, wood fuel quality in terms of mineral concentrations was influenced by the age of the shoot population at harvest, stand structure, management practices (e.g. planting density, fertilisation) and site conditions (soil type, element availability). Our results imply that harvestable shoot biomass of willows grown as few large stems have better wood fuel quality, compared to harvestable shoot biomass of many small stems. Increased length of cutting cycle improves the wood fuel quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2008.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2008.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: Bonosi, L.; GHELARDINI, LUISA; Weih, M.;handle: 2158/1072862
Abstract Willow (Salix spp.) is an attractive biomass resource for many regions, but is today grown commercially mainly in cool-temperate areas. It is unclear whether modern willow hybrids bred for cool-temperate climate are capable of regulating strong water losses when exposed to warm and/or dry climate. The objective was to assess leaf scale water relations (evapotranspiration, E; and stomatal conductance, GS) and corresponding leaf traits in six wild and hybrid willows field-grown in Central Sweden (cool and well-watered), Northern Portugal (warm and dry), and Northern Italy (warm and well-watered). Diurnal courses of E, GS and leaf temperature were recorded, plant heights measured, and leaves sampled for assessment of specific leaf area (SLA) and area-based leaf N content (Na). Height growth, GS, SLA and Na varied between the genotypes, but genotype environment interaction was important only for plant height and GS. Thus, genotypic variation in leaf scale E was mostly caused by stomatal (GS) and not by non-stomatal (leaf temperature) genotypic variation. Leaf scale E was positively correlated with Na when assessed across the drought gradient. It is concluded that the willow hybrids bred for cool-temperate climate (in Scandinavia) are capable of regulating strong water losses when exposed to warm and/or dry climate (in Southern Europe), provided that water supply is good. The ability to regulate water losses under warm and dry conditions in the short term is a pre-condition to high water use efficiency and improved growth in warm and dry environments also in the long term.
Biomass and Bioenerg... arrow_drop_down Flore (Florence Research Repository)Article . 2013Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2013.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down Flore (Florence Research Repository)Article . 2013Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2013.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SwedenPublisher:Springer Science and Business Media LLC Rami-Petteri Apuli; Thomas J. Richards; Thomas J. Richards; Martin Weih; Almir Karacic; Ann-Christin Rönnberg-Wästljung; Pär K. Ingvarsson;AbstractIn a warming climate, the ability to accurately predict and track shifting environmental conditions will be fundamental for plant survival. Environmental cues define the transitions between growth and dormancy as plants synchronise development with favourable environmental conditions, however these cues are predicted to change under future climate projections which may have profound impacts on tree survival and growth. Here, we use a quantitative genetic approach to estimate the genetic basis of spring and autumn phenology in Populus trichocarpa to determine this species capacity for climate adaptation. We measured bud burst, leaf coloration, and leaf senescence traits across two years (2017–2018) and combine these observations with measures of lifetime growth to determine how genetic correlations between phenology and growth may facilitate or constrain adaptation. Timing of transitions differed between years, although we found strong cross year genetic correlations in all traits, suggesting that genotypes respond in consistent ways to seasonal cues. Spring and autumn phenology were correlated with lifetime growth, where genotypes that burst leaves early and shed them late had the highest lifetime growth. We also identified substantial heritable variation in the timing of all phenological transitions (h2 = 0.5–0.8) and in lifetime growth (h2 = 0.8). The combination of additive variation and favourable genetic correlations in phenology traits suggests that populations of cultivated varieties of P. Trichocarpa may have the capability to adapt their phenology to climatic changes without negative impacts on growth.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41437-020-00363-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41437-020-00363-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Oxford University Press (OUP) Authors: Martin Weih;pmid: 19793729
Six commercial willow (Salix spp.) varieties were examined to investigate the effects of genotype and environment on spring and autumn phenology and the relationships between phenology, shoot growth and leaf nitrogen (N) retranslocation. The willows were field-grown under different irrigation and fertilization in central Sweden. Two independent data sets of bud-burst, leaf unfolding duration, growth cessation and the timing of leaf abscission were assessed, and the biomass and leaf N data from the end of the first cutting cycle were used. Specific hypotheses were that (1) spring phenology has a greater effect on the shoot biomass production than autumn phenology; (2) later bud-burst is associated with more rapid leaf unfolding; (3) the timing of leaf abscission has a greater effect on the shoot biomass production than height growth cessation; and (4) later leaf fall is associated with poorer leaf N retranslocation. Bud-burst date varied by 19 and 39 days in the 2 years and leaf unfolding duration varied by 13 and 38 days. Growth cessation varied by 2.5 weeks and completion of leaf abscission (> 90% of leaves shed) by more than 3 weeks between the genotypes and treatments. Bud-burst date was inversely correlated with leaf unfolding duration (R(2) = 0.96). Significant effects of the duration of leafy period (bud-burst to leaf abscission) and bud-burst date on shoot growth were found. Delayed growth cessation and leaf abscission were generally associated with a greater biomass production, but especially the relationship between growth cessation and biomass was weak. The results show that the timing of bud-burst and leaf abscission is more important for willow biomass production than growth cessation. Delayed leaf abscission has a negative effect on leaf N retranslocation and increases the N losses. The results have implications for the breeding of perennial energy crops.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpp081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpp081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Informa UK Limited Authors: Martin Weih; Almir Karacic; Theo Verwijst;Although poplars are widely grown in short-rotation forestry in many countries, little is known about poplar growth performance in Sweden. In this study, above-ground biomass production was estimated for several hybrid aspen and poplar clones planted at different initial density at five locations across Sweden. Biomass assessments were based on allometric relationships between total above-ground woody dry weight and the diameter at breast height. According to a common harvest practice, tree biomass was partitioned into pulpwood and biomass for energy purposes. The percentage of pulpwood was strongly determined by clone for DBH >10 cm. The mean annual increment ranged from 3.3 Mg ha−1 yr−1 for balsam poplar in the north to 9.2 Mg ha−1 yr−1 for 9-yr-old ‘Boelare’ in southern Sweden. At the same age, hybrid aspen reached 7.9 Mg ha−1 yr−1. The results suggest that poplars and hybrid aspen are superior as biomass producers compared with tree species commonly grown on agricultural land at these latitudes. The r...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02827580310009113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02827580310009113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 SwedenPublisher:Wiley Ann Christin Rönnberg‐Wästljung; Louis Dufour; Jie Gao; Per‐Anders Hansson; Anke Herrmann; Mohamed Jebrane; Ann‐Christine Johansson; Saurav Kalita; Roger Molinder; Nils‐Erik Nordh; Jonas A. Ohlsson; Volkmar Passoth; Mats Sandgren; Anna Schnürer; Andong Shi; Nasko Terziev; Geoffrey Daniel; Martin Weih;doi: 10.1111/gcbb.12991
AbstractBioenergy will be one of the most important renewable energy sources in the conversion from fossil fuels to bio‐based products. Short rotation coppice Salix could be a key player in this conversion since Salix has rapid growth, positive energy balance, easy to manage cultivation system with vegetative propagation of plant material and multiple harvests from the same plantation. The aim of the present paper is to provide an overview of the main challenges and key issues in willow genetic improvement toward sustainable biofuel value chains. Primarily based on results from the research project “Optimized Utilization of Salix” (OPTUS), the influence of Salix wood quality on the potential for biofuel use is discussed, followed by issues related to the conversion of Salix biomass into liquid and gaseous transportation fuels. Thereafter, the studies address genotypic influence on soil carbon sequestration in Salix plantations, as well as on soil carbon dynamics and climate change impacts. Finally, the opportunities for plant breeding are discussed using willow as a resource for sustainable biofuel production. Substantial phenotypic and genotypic variation was reported for different wood quality traits important in biological (i.e., enzymatic and anaerobic) and thermochemical conversion processes, which is a prerequisite for plant breeding. Furthermore, different Salix genotypes can affect soil carbon sequestration variably, and life cycle assessment illustrates that these differences can result in different climate mitigation potential depending on genotype. Thus, the potential of Salix plantations for sustainable biomass production and its conversion into biofuels is shown. Large genetic variation in various wood and biomass traits, important for different conversion processes and carbon sequestration, provides opportunities to enhance the sustainability of the production system via plant breeding. This includes new breeding targets in addition to traditional targets for high yield to improve biomass quality and carbon sequestration potential.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Springer Science and Business Media LLC Authors: Ann-Christin Rönnberg-Wästljung; Carolyn Glynn; Martin Weih;pmid: 15619077
Quantitative trait loci (QTL) for growth traits and water-use efficiency have been identified in two water regimes (normal and drought-treated) and for a treatment index. A tetraploid hybrid F2 population originating from a cross between a Salix dasyclados clone (SW901290) and a Salix viminalis clone ('Jorunn') was used in the study. The growth response of each individual including both above and below ground dry-matter production (i.e. shoot length, shoot diameter, aboveground and root dry weight, internode length, root dry weight/total dry weight, relative growth rate and leaf nitrogen content) was analysed in a replicated block experiment with two water treatments. A composite interval mapping approach was used to estimate number of QTL, the magnitude of the QTL and their position on genetic linkage maps. QTL specific for each treatment and for the treatment index were found, but QTL common across the treatments and the treatment index were also detected. Each QTL explained from 8% to 29% of the phenotypic variation, depending on trait and treatment. Clusters of QTL for different traits were mapped close to each other at several linkage groups, indicating either a common genetic base or tightly linked QTL. Common QTL identified between treatments and treatment index in the complex trait dry weight can be useful tools in the breeding and selection for drought stress tolerance in Salix.
Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-004-1866-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2004 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-004-1866-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | BIOENERGYEC| BIOENERGYAuthors: Andreas Bolte; Sarah Baum; Martin Weih; Martin Weih;Increasing loss of biodiversity in agricultural landscapes is often debated in the bioenergy context, especially with respect to non-traditional crops that can be grown for energy production in the future. As promising renewable energy source and additional landscape element, the potential role of short rotation coppice (SRC) plantations to biodiversity is of great interest. We studied plant species richness in eight landscapes (225 km2) containing willow and poplar SRC plantations (1,600 m2) in Sweden and Germany, and the related SRC α-diversity to species richness in the landscapes (γ-diversity). Using matrix variables, spatial analyses of SRC plantations and landscapes were performed to explain the contribution of SRC α-diversity to γ-diversity. In accordance with the mosaic concept, multiple regression analyses revealed number of habitat types as a significant predictor for species richness: the higher the habitat type number, the higher the γ-diversity and the lower the proportion of SRC plantation α-diversity to γ-diversity. SRC plantation α-diversity was 6.9 % (±1.7 % SD) of species richness on the landscape scale. The contribution of SRC plantations increased with decreasing γ-diversity. SRC plantations were dominated more by species adapted to frequent disturbances and anthropo-zoogenic impacts than surrounding landscapes. We conclude that by providing habitats for plants with different requirements, SRC α-diversity has a significant share on γ-diversity in rural areas and can promote diversity in landscapes with low habitat heterogeneity and low species pools. However, plant diversity enrichment is mainly due to additional species typically present in disturbed and anthropogenic environments.
BioEnergy Research arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2012 . Peer-reviewedLicense: CC BY NC NDGöttingen Research Online PublicationsArticle . 2018License: CC BY NC NDData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-012-9195-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert BioEnergy Research arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2012 . Peer-reviewedLicense: CC BY NC NDGöttingen Research Online PublicationsArticle . 2018License: CC BY NC NDData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-012-9195-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019 SwedenPublisher:Frontiers Media SA Hallingbäck, Henrik; Berlin, Sofia; Nordh, Nils-Erik; Weih, Martin; Rönnberg Wästljung, Ann-Christin;The short rotation biomass crop willow (Salix genera) has been of interest for bioenergy but recently also for biofuel production. For a faster development of new varieties molecular markers could be used as selection tool in an early stage of the breeding cycle. To identify markers associated with growth traits, genome-wide association mapping was conducted using a population of 291 Salix viminalis accessions collected across Europe and Russia and a large set of genotyping-by-sequencing markers. The accessions were vegetatively propagated and planted in replicated field experiments, one in Southern Sweden and one in Central Sweden. Phenology data, including bud burst and leaf senescence, as well as different growth traits were collected and measured repeatedly between 2010 and 2017 at both field environments. A value of the plasticity for each accession was calculated for all traits that were measured the same year in both environments as the normalized accession value in one environment subtracted by the corresponding value in the other environment. Broad-sense accession heritabilities and narrow-sense chip heritabilities ranged from 0.68 to 0.95 and 0.45 to 0.99, respectively for phenology traits and from 0.56 to 0.85 and 0.24 to 0.97 for growth traits indicating a considerable genetic component for most traits. Population structure and kinship between accessions were taken into account in the association analyses. In total, 39 marker-trait associations were found where four were specifically connected to plasticity and interestingly one particular marker was associated to several different plasticity growth traits. Otherwise association consistency was poor, possibly due to accession by environment interactions which were demonstrated by the low structure adjusted accession correlations across environments (ranging from 0.40 to 0.58). However, one marker association with biomass fresh weight was repeatedly observed in the same environment over two harvest years. For some traits where several associations were found, the markers jointly explained over 20% of the accession variation. The result from this study using a population of unrelated accessions has given useful information about marker-trait associations especially highlighting marker-plasticity associations and genotype-by-environment interactions as important factors to take account of in future strategies of Salix breeding.
Frontiers in Plant S... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2019.00753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2019.00753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:EC | Dendromass4Europe, FCT | D4EC| Dendromass4Europe ,FCT| D4Matthias Meyer; Filipa Tavares Wahren; Norbert Weber; Ronald S. Zalesny; Martin Weih;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-021-10275-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-021-10275-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Ioannis Dimitriou; Martin Weih; Theo Verwijst; Anneli Adler; Anneli Adler; Pär Aronsson;Abstract This study assessed the effects of stand structure and fertilisation with wood ash and/or sludge on wood fuel quality of Salix viminalis. The relative proportions of bark and wood in 1-, 2- and 3-year-old shoot populations were determined. The concentrations of essential elements (N, P, K) and heavy metals (Cu, Zn, Cd, Ni) in bark and wood were used to assess the wood fuel quality in harvestable shoot biomass. Controlled field experiments were conducted on two newly harvested commercial short-rotation willow coppice fields. Five treatments were applied: sewage sludge at the maximum legally permitted amount; ash; two sludge–ash mixtures supplying the maximum and twice the maximum permitted sludge–ash amount; and a control receiving mineral nutrients only. The proportion of bark in the willow stands was decreasing with the age of the shoot population. The shoot population with few large stems, compared to that with many small stems, had a lower proportion of element-rich bark in the harvestable shoot biomass, meaning better quality of the wood fuel. Overall, wood fuel quality in terms of mineral concentrations was influenced by the age of the shoot population at harvest, stand structure, management practices (e.g. planting density, fertilisation) and site conditions (soil type, element availability). Our results imply that harvestable shoot biomass of willows grown as few large stems have better wood fuel quality, compared to harvestable shoot biomass of many small stems. Increased length of cutting cycle improves the wood fuel quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2008.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2008.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: Bonosi, L.; GHELARDINI, LUISA; Weih, M.;handle: 2158/1072862
Abstract Willow (Salix spp.) is an attractive biomass resource for many regions, but is today grown commercially mainly in cool-temperate areas. It is unclear whether modern willow hybrids bred for cool-temperate climate are capable of regulating strong water losses when exposed to warm and/or dry climate. The objective was to assess leaf scale water relations (evapotranspiration, E; and stomatal conductance, GS) and corresponding leaf traits in six wild and hybrid willows field-grown in Central Sweden (cool and well-watered), Northern Portugal (warm and dry), and Northern Italy (warm and well-watered). Diurnal courses of E, GS and leaf temperature were recorded, plant heights measured, and leaves sampled for assessment of specific leaf area (SLA) and area-based leaf N content (Na). Height growth, GS, SLA and Na varied between the genotypes, but genotype environment interaction was important only for plant height and GS. Thus, genotypic variation in leaf scale E was mostly caused by stomatal (GS) and not by non-stomatal (leaf temperature) genotypic variation. Leaf scale E was positively correlated with Na when assessed across the drought gradient. It is concluded that the willow hybrids bred for cool-temperate climate (in Scandinavia) are capable of regulating strong water losses when exposed to warm and/or dry climate (in Southern Europe), provided that water supply is good. The ability to regulate water losses under warm and dry conditions in the short term is a pre-condition to high water use efficiency and improved growth in warm and dry environments also in the long term.
Biomass and Bioenerg... arrow_drop_down Flore (Florence Research Repository)Article . 2013Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2013.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down Flore (Florence Research Repository)Article . 2013Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2013.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 SwedenPublisher:Springer Science and Business Media LLC Rami-Petteri Apuli; Thomas J. Richards; Thomas J. Richards; Martin Weih; Almir Karacic; Ann-Christin Rönnberg-Wästljung; Pär K. Ingvarsson;AbstractIn a warming climate, the ability to accurately predict and track shifting environmental conditions will be fundamental for plant survival. Environmental cues define the transitions between growth and dormancy as plants synchronise development with favourable environmental conditions, however these cues are predicted to change under future climate projections which may have profound impacts on tree survival and growth. Here, we use a quantitative genetic approach to estimate the genetic basis of spring and autumn phenology in Populus trichocarpa to determine this species capacity for climate adaptation. We measured bud burst, leaf coloration, and leaf senescence traits across two years (2017–2018) and combine these observations with measures of lifetime growth to determine how genetic correlations between phenology and growth may facilitate or constrain adaptation. Timing of transitions differed between years, although we found strong cross year genetic correlations in all traits, suggesting that genotypes respond in consistent ways to seasonal cues. Spring and autumn phenology were correlated with lifetime growth, where genotypes that burst leaves early and shed them late had the highest lifetime growth. We also identified substantial heritable variation in the timing of all phenological transitions (h2 = 0.5–0.8) and in lifetime growth (h2 = 0.8). The combination of additive variation and favourable genetic correlations in phenology traits suggests that populations of cultivated varieties of P. Trichocarpa may have the capability to adapt their phenology to climatic changes without negative impacts on growth.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41437-020-00363-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41437-020-00363-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Oxford University Press (OUP) Authors: Martin Weih;pmid: 19793729
Six commercial willow (Salix spp.) varieties were examined to investigate the effects of genotype and environment on spring and autumn phenology and the relationships between phenology, shoot growth and leaf nitrogen (N) retranslocation. The willows were field-grown under different irrigation and fertilization in central Sweden. Two independent data sets of bud-burst, leaf unfolding duration, growth cessation and the timing of leaf abscission were assessed, and the biomass and leaf N data from the end of the first cutting cycle were used. Specific hypotheses were that (1) spring phenology has a greater effect on the shoot biomass production than autumn phenology; (2) later bud-burst is associated with more rapid leaf unfolding; (3) the timing of leaf abscission has a greater effect on the shoot biomass production than height growth cessation; and (4) later leaf fall is associated with poorer leaf N retranslocation. Bud-burst date varied by 19 and 39 days in the 2 years and leaf unfolding duration varied by 13 and 38 days. Growth cessation varied by 2.5 weeks and completion of leaf abscission (> 90% of leaves shed) by more than 3 weeks between the genotypes and treatments. Bud-burst date was inversely correlated with leaf unfolding duration (R(2) = 0.96). Significant effects of the duration of leafy period (bud-burst to leaf abscission) and bud-burst date on shoot growth were found. Delayed growth cessation and leaf abscission were generally associated with a greater biomass production, but especially the relationship between growth cessation and biomass was weak. The results show that the timing of bud-burst and leaf abscission is more important for willow biomass production than growth cessation. Delayed leaf abscission has a negative effect on leaf N retranslocation and increases the N losses. The results have implications for the breeding of perennial energy crops.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpp081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpp081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Informa UK Limited Authors: Martin Weih; Almir Karacic; Theo Verwijst;Although poplars are widely grown in short-rotation forestry in many countries, little is known about poplar growth performance in Sweden. In this study, above-ground biomass production was estimated for several hybrid aspen and poplar clones planted at different initial density at five locations across Sweden. Biomass assessments were based on allometric relationships between total above-ground woody dry weight and the diameter at breast height. According to a common harvest practice, tree biomass was partitioned into pulpwood and biomass for energy purposes. The percentage of pulpwood was strongly determined by clone for DBH >10 cm. The mean annual increment ranged from 3.3 Mg ha−1 yr−1 for balsam poplar in the north to 9.2 Mg ha−1 yr−1 for 9-yr-old ‘Boelare’ in southern Sweden. At the same age, hybrid aspen reached 7.9 Mg ha−1 yr−1. The results suggest that poplars and hybrid aspen are superior as biomass producers compared with tree species commonly grown on agricultural land at these latitudes. The r...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02827580310009113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02827580310009113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu