- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of), United Kingdom, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Qiaozhi Zhang; Yuqing Sun; Weijian Xu; Yang Cao; Chunfei Wu; Chi-Hwa Wang; Daniel C.W. Tsang;pmid: 36731614
Microwave (MW)-assisted catalytic degradation of organic pollutants draws increasing attention owing to its high efficiency in wastewater treatment. This work developed Cu-loaded biochar (CuBC) catalysts for time-efficient mineralization of refractory and high-concentration oxytetracycline (OTC). With only 1 min at 80 °C, Na2S2O8 achieved 100% total organic carbon (TOC) removal over the Cu5BC, while NaClO mineralized 73.3% TOC over the metal-free BC, in contrast to a relatively low mineralization efficiency (< 35%) achieved by H2O2. The high efficiency in MW-assisted oxidation systems could be ascribed to reactive oxidizing species (•SO4- or •ClO), which otherwise were barely detectable in a conventional heating system. The interactions between CuBC and MW were revealed by correlating the physiochemical characteristics to the MW absorption ability. The proposed catalytic systems can contribute to the development of a high-throughput and low-carbon wastewater treatment technology.
Bioresource Technolo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 China (People's Republic of), United Kingdom, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Qiaozhi Zhang; Yuqing Sun; Weijian Xu; Yang Cao; Chunfei Wu; Chi-Hwa Wang; Daniel C.W. Tsang;pmid: 36731614
Microwave (MW)-assisted catalytic degradation of organic pollutants draws increasing attention owing to its high efficiency in wastewater treatment. This work developed Cu-loaded biochar (CuBC) catalysts for time-efficient mineralization of refractory and high-concentration oxytetracycline (OTC). With only 1 min at 80 °C, Na2S2O8 achieved 100% total organic carbon (TOC) removal over the Cu5BC, while NaClO mineralized 73.3% TOC over the metal-free BC, in contrast to a relatively low mineralization efficiency (< 35%) achieved by H2O2. The high efficiency in MW-assisted oxidation systems could be ascribed to reactive oxidizing species (•SO4- or •ClO), which otherwise were barely detectable in a conventional heating system. The interactions between CuBC and MW were revealed by correlating the physiochemical characteristics to the MW absorption ability. The proposed catalytic systems can contribute to the development of a high-throughput and low-carbon wastewater treatment technology.
Bioresource Technolo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Queen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128698&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu