- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Peng Ji; Jiling Yang; Nan Zhang; Qian Zhai; Minjie Li; Yueyi Wang; Tianlun Shen; Alfrendo Satyanaga;doi: 10.3390/su15064763
The standard penetration test (SPT) is a widely used in situ test method worldwide that can evaluate soil properties based on the blow counts (N-value). The N-value depends on soil properties, and the energy transferred to the drill pipe during hammering. Currently, European and American scholars generally believe that variation in the amount of hammer energy transmitted to the drill pipe due to different types of drop hammer systems is the primary factor that leads to variations in N-value. In China, there is a lack of research on the quantitative energy transfer efficiency of the drop hammer system based on test data from a penetration test instrument. In this study, an in-situ test in Jiangsu Province was performed at a test site using standard penetration test instruments that are commonly used in China. Corresponding time history curves and strain, acceleration, force, velocity, energy and penetration degree data were obtained through the stress wave test. The propagation law of the stress wave and energy in a drill pipe was analyzed, and the energy transfer efficiency of the domestic SPT system was measured. In the stress wave test, most of the measured hammer energy efficiency was between 74.5 and 84.5%, and the measured average energy was 0.3723 kJ; the average energy efficiency was 78.7%; the standard deviation (SD) of the energy efficiency was 3.82, and the coefficient of variation (CV) of energy transfer efficiency(ER) was 4.9%. The average energy efficiency of 78.7% can be considered to be the energy efficiency of the domestic SPT system. The calculated results reported in this article can be used to improve the quantitative level of domestic investigation. Based on the calculated Er, the results obtained from different SPT systems at home and abroad can be corrected.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4763/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064763&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4763/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064763&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Yazhou Ou; Gang Tian; Junjie Chen; Guoguang Chen; Xiaoyu Chen; Hai Li; Binggang Liu; Tianyu Huang; Mengyun Qiang; Alfrendo Satyanaga; Qian Zhai;doi: 10.3390/su141711013
The construction of tunnels involves massive excavation work and generates an enormous amount of waste slag. The improper disposal of the waste slag may cause environmental pollution. The treatment of waste slag is usually costly. In this study, the feasibility of recycling waste slag as a component in the synchronous grouting material was investigated. A series of experimental measurements were conducted to evaluate the performance of grouting material with different proportions of recycled waste slag. The experimental results show that the grouting material with the selected proportion of recycled slag has a similar performance to the original grouting material mix. It was observed that waste slag can be recycled as one component of the grouting material for tunneling engineering.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141711013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141711013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mărgărit-Mircea Nistor; Alfrendo Satyanaga; Ştefan Dezsi; Ionel Haidu;The sustainability of a territory is closely related to its resources. Due to climate change, the most precious natural resource, water, has been negatively affected by climatic conditions in terms of quantity and quality. CLIMAT datasets of 1 km2 spatial resolution were used and processed in the ArcGIS environment to generate maps of actual evapotranspiration, water availability, and effective precipitation for the periods of 1961–1990 (1990s), 2011–2040 (2020s), and 2041–2070 (2050s). The product is of paramount importance for the analysis of the actual situation in Europe indicating high water availability in the Alps Range, the Carpathians Mountains, Northern European countries, and the British Islands. On the other hand, low water availability has been evidenced in the Southern and Eastern European areas. For the future period (2050s), the monthly potential evapotranspiration is expected to increase by 30%. The climate models also show an increase in the actual evapotranspiration between past and future periods by 40%. The changes in water availability and effective precipitation between the past (1990s) and future (2050s) indicate decreases of 10%. The most affected areas by climate change are located within the Mediterranean areas, the Iberian Peninsula, and Eastern Europe.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/5/772/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13050772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/5/772/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13050772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Gerarldo Davin Aventian; Alfrendo Satyanaga; Aizhan Sagu; Bakytkul Serikbek; Gulnur Pernebekova; Bakhyt Aubakirova; Qian Zhai; Jong Kim;doi: 10.3390/su16010313
The presence of unsaturated soil is critical in geotechnical engineering since the matric suction may aid in accommodating the pile shaft capacity. The design of piles can be optimized by incorporating unsaturated soil mechanics principles. Hence, the amount of waste materials can be reduced, the duration of pile installation can be expedited, and the amount of energy used for casting the pile can be optimized, resulting in more sustainable design and construction of piles. Conventional α, β, and λ methods and modified α, β, and λ methods are the common models that are used for calculating the shaft capacity by incorporating soil–water characteristic curves (SWCCs). However, in our opinion, we feel that the investigation of the influence of seepage infiltration due to rainfall on the shaft capacity of piles, calculated using both analytical means and numerical analysis, has been dealt with inadequately in past studies. The objective of this study is to investigate changes in the shaft pile capacity according to suction changes due to rainwater infiltration for the greater reliability of the pile design, using both analytical and numerical studies with the finite element method (FEM). Sand and kaolin, which are typical components of coarse-grained and fine-grained soil, are used in this study. The laboratory results were incorporated into PLAXIS 3D (Version 22), and a coupled analysis was carried out, utilizing the meteorological conditions in Astana. The results showed that the decreases in matric suction in sand and kaolin are similar after their subjection to rainfall, yet sand produces a higher shaft capacity compared to kaolin. The modified β method offers a higher shaft capacity compared to the other methods due to the effective stress factors being taken into account. The modified α and λ methods are recommended for short piles because they are more sustainable, whilst the modified β method is preferable for long piles. Overall, unsaturated soil conditions should be applied to optimize the foundation design since they generate a higher shaft capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16010313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16010313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:EDP Sciences Alfrendo Satyanaga; Qian Zhai; H. Rahardjo; Gilson de Farias Neves Gitirana; Soo Young Moon; Jong Kim;Capillary barrier system (CBS) was developed as a slope protection method to prevent rainwater infiltration into the underlying soil based on the principle of unsaturated soil mechanics by harnessing the distinct difference in hydraulic properties of a fine-grained layer with those of a coarse-grained layer of soils. The CBS is commonly designed and constructed using gravel as coarse-grained material and fine sand as fine-grained material. However, due to scarcity of natural aggregates and in consideration of environmental sustainability, there is a need to utilize recycled materials in capillary barrier system. In this project, coarse and fine recycled concrete were used as the coarse- and fine-grained materials, respectively. The appearance of CBS was enhanced with an additional layer of approved soil mixture (ASM) to incorporate vegetation as green cover. CBS as a sustainable slope cover has been constructed for slope protection surrounding basement carpark in the new public housing development at Matilda, Singapore. The design, construction and monitoring system for the CBS are presented and discussed in this paper. The field measurement data provide verification of the performance of the CBS. Both field measurement and numerical analyses demonstrated that CBS performed well as designed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/202133703021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/202133703021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SingaporePublisher:MDPI AG Abdul Halim Hamdany; Martin Wijaya; Alfrendo Satyanaga; Harianto Rahardjo; Zhai Qian; Aswin Lim; Jong Kim;doi: 10.3390/su15118653
handle: 10356/169396
Soil suction plays an important role in governing the stability of slopes. Environmental sustainability could be jeopardized by hazards, such as slope failures (forest destruction, landscape alteration, etc.). However, the quantification of the suction effect on slope stability is a challenging task as the soil suction is usually affected by the precipitation and evapotranspiration. Numerical simulation plays an important role in the estimation of contour in soil suction due to rainfall and evapotranspiration as long-term and widespread monitoring is rarely conducted. The result of numerical simulation is highly dependent on the accuracy of the input parameters. Hence, suction monitoring plays an important role in verifying the result of numerical simulation. However, as a conventional tensiometer is limited to 100 kPa soil suction, it is hard to verify the performance of numerical simulation where suction is higher than 100 kPa. The osmotic tensiometer developed by Nanyang Technological University (NTU) can overcome this problem. It is now possible to monitor changes in soil suction higher than 100 kPa (up to 2500 kPa) for an extended period in the field. In this study, a procedure was proposed to estimate suction changes in residual soil based on rainfall and evapotranspiration data. Numerical simulation was carried out based on the soil properties and geometry of a residual soil slope from Jurong Formation Singapore. Changes in soil suction due to rainfall and evaporation were simulated and compared with the readings from the NTU osmotic tensiometers installed at 0.15 m and 0.50 m from the slope surface in the field. It was observed that numerical simulation was able to capture the variations of suctions accurately at greater depths. However, at shallow depths, erratic suction changes due to difficulties in capturing transpiration.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169396Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15118653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169396Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15118653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Sonny Irawan; Dennis Delali Kwesi Wayo; Alfrendo Satyanaga; Jong Kim;The conventional well placement was done manually by using a numerical reservoir simulator, and it required a lengthy trial-and-error process. It required great experience and expertise to manipulate the variables and uncertainties that lie on the reservoir to determine the best placement of the well. In addition, the traditional gradient-based methods such as Line-search and Trust-region were not viable in terms of maximum results obtained. Gradient-based methods were too dependent on the surface gradient of the solution and may only converge to local optima instead of global optima. Complex reservoirs have rough surfaces with high uncertainties, which hinders the traditional gradient-based method from converging to global optima. Thus, genetic algorithms were utilized to automate the manual trial-and-error process and to overcome the limitations of the traditional gradient-based method. The objectives of this study were to analyse the effect of different initial well placement distributions, the number of random solution sizes, and the crossover rate on cumulative oil production. A synthetic reservoir model built using CMG Builder was used as the testing platform for the optimization problems. Well-placement parameterization and optimization set-up were carried out using the CMG CMOST optimization tool. The integration of CMG IMEX and CMOST optimized cumulative oil production based on the objectives of the study. The results obtained showed that the higher number of random solutions used resulted in higher cumulative oil production, with more generations needed to reach the optimum solution. It can be concluded that the larger number of random solutions used increased the probability of reaching the optimum solution, but will take more generations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202402.1677.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202402.1677.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Dennis Delali Kwesi Wayo; Sonny Irawan; Alfrendo Satyanaga; Ghulam Abbas;doi: 10.3390/en16104185
Drilling bits are essential downhole hardware that facilitates drilling operations in high-pressure, high-temperature regions and in most carbonate reservoirs in the world. While the drilling process can be optimized, drilling operators and engineers become curious about how drill bits react during rock breaking and penetration. Since it is experimentally expensive to determine, the goal of the study is to maximize the rate of penetration by modeling fluid interactions around the roller cone drilling bit (RCDB), specifying a suitable number of jet nozzles and venturi effects for non-Newtonian fluids (synthetic-based muds), and examining the effects of mud particles and drill cuttings. Ansys Fluent k-epsilon turbulence viscous model, a second order upwind for momentum, turbulent kinetic energy, and dissipation rate, were used to model the specified 1000 kg/m3 non-Newtonian fluid around the roller cone drill bit. The original geometry of the nozzles was adapted from a Chinese manufacturer whose tricone had three jet nozzles. The results of our six redesigned jet nozzles (3 outer, 39.12 mm, and 3 proximal, 20 mm) sought to offer maximum potential for drilling optimization. However, at a pressure of 9.39 × 104 Pa, the wellbore with particle sizes between 0.10 mm and 4.2 mm drill cuttings observed an improved rate of penetration with a rotation speed of 150 r/min.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/10/4185/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/10/4185/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SingaporePublisher:MDPI AG Xuebo Li; Tianlun Shen; Ke Xiang; Qian Zhai; Harianto Rahardjo; Alfrendo Satyanaga; Shijun Wang;doi: 10.3390/su15031822
handle: 10356/169394
Rainwater infiltration is primarily governed by the soil-water characteristic curve (SWCC) and hydraulic conductivity function (HCF) of soil. Both the SWCC and the HCF are hysteretic during the drying and wetting processes. In a numerical simulation, different seepage results can be obtained by incorporating different hydraulic conductivity functions of soil. In practice, the wetting HCF is commonly estimated from the wetting SWCC using the statistical method, which is named HCFswcc,w in this note. However, there is no study that has verified the results from seepage analyses using HCFswcc,w. Therefore, the objective of this study is to investigate the influence of wetting SWCC and wetting HCF on 1-D water infiltration. The results from the numerical simulations were verified with the instrumentation reading from a soil column. It was observed that the results from the model using wetting HCFPSDF, which defines the wetting HCF estimated using the concept of pore-size distribution function, gave better agreement with the instrumented data. Therefore, both wetting SWCC and wetting HCFPSDF are advised to be used as input information for the numerical simulation of rainwater infiltration.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169394Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169394Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Lixian Tang; Qiang Zhou; Shoulong Wang; Wenjie Yao; Bowei Zhang; Ke Xiang; Alfrendo Satyanaga; Jin Tao;doi: 10.3390/su142316230
The transportation system is one of the major infrastructures in urban areas, and it serves 56% of the world’s population. Nowadays, metro lines are developing fast in urban areas. Due to the restrictions of urban fields, metro lines are usually not planned straight, and a curved line is required to connect stations in different locations in a city. As a result, small curvature tunnels are commonly constructed in urban areas. The tunneling construction in a city area may cause ground settlement, which is sensitive to surrounding buildings and underground utilities. The aim of this study is to explore the impact of curvature alignment on the ground settlement. In this paper, ground settlements induced by small curvature shield tunneling were evaluated by using a numerical analysis. A total of six cases were selected for the analysis. The results obtained from the numerical simulations were compared with Peck’s equation. It is observed that Peck’s equation can be used for the estimation of the maximum settlement. However, the ground settlements on both sides of the central axis of the curved tunnel are asymmetrical, and Peck’s equation, which provides a symmetrical settlement, may not be applicable in the case of small curvature tunnels.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142316230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142316230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Peng Ji; Jiling Yang; Nan Zhang; Qian Zhai; Minjie Li; Yueyi Wang; Tianlun Shen; Alfrendo Satyanaga;doi: 10.3390/su15064763
The standard penetration test (SPT) is a widely used in situ test method worldwide that can evaluate soil properties based on the blow counts (N-value). The N-value depends on soil properties, and the energy transferred to the drill pipe during hammering. Currently, European and American scholars generally believe that variation in the amount of hammer energy transmitted to the drill pipe due to different types of drop hammer systems is the primary factor that leads to variations in N-value. In China, there is a lack of research on the quantitative energy transfer efficiency of the drop hammer system based on test data from a penetration test instrument. In this study, an in-situ test in Jiangsu Province was performed at a test site using standard penetration test instruments that are commonly used in China. Corresponding time history curves and strain, acceleration, force, velocity, energy and penetration degree data were obtained through the stress wave test. The propagation law of the stress wave and energy in a drill pipe was analyzed, and the energy transfer efficiency of the domestic SPT system was measured. In the stress wave test, most of the measured hammer energy efficiency was between 74.5 and 84.5%, and the measured average energy was 0.3723 kJ; the average energy efficiency was 78.7%; the standard deviation (SD) of the energy efficiency was 3.82, and the coefficient of variation (CV) of energy transfer efficiency(ER) was 4.9%. The average energy efficiency of 78.7% can be considered to be the energy efficiency of the domestic SPT system. The calculated results reported in this article can be used to improve the quantitative level of domestic investigation. Based on the calculated Er, the results obtained from different SPT systems at home and abroad can be corrected.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4763/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064763&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/4763/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15064763&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Yazhou Ou; Gang Tian; Junjie Chen; Guoguang Chen; Xiaoyu Chen; Hai Li; Binggang Liu; Tianyu Huang; Mengyun Qiang; Alfrendo Satyanaga; Qian Zhai;doi: 10.3390/su141711013
The construction of tunnels involves massive excavation work and generates an enormous amount of waste slag. The improper disposal of the waste slag may cause environmental pollution. The treatment of waste slag is usually costly. In this study, the feasibility of recycling waste slag as a component in the synchronous grouting material was investigated. A series of experimental measurements were conducted to evaluate the performance of grouting material with different proportions of recycled waste slag. The experimental results show that the grouting material with the selected proportion of recycled slag has a similar performance to the original grouting material mix. It was observed that waste slag can be recycled as one component of the grouting material for tunneling engineering.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141711013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141711013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mărgărit-Mircea Nistor; Alfrendo Satyanaga; Ştefan Dezsi; Ionel Haidu;The sustainability of a territory is closely related to its resources. Due to climate change, the most precious natural resource, water, has been negatively affected by climatic conditions in terms of quantity and quality. CLIMAT datasets of 1 km2 spatial resolution were used and processed in the ArcGIS environment to generate maps of actual evapotranspiration, water availability, and effective precipitation for the periods of 1961–1990 (1990s), 2011–2040 (2020s), and 2041–2070 (2050s). The product is of paramount importance for the analysis of the actual situation in Europe indicating high water availability in the Alps Range, the Carpathians Mountains, Northern European countries, and the British Islands. On the other hand, low water availability has been evidenced in the Southern and Eastern European areas. For the future period (2050s), the monthly potential evapotranspiration is expected to increase by 30%. The climate models also show an increase in the actual evapotranspiration between past and future periods by 40%. The changes in water availability and effective precipitation between the past (1990s) and future (2050s) indicate decreases of 10%. The most affected areas by climate change are located within the Mediterranean areas, the Iberian Peninsula, and Eastern Europe.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/5/772/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13050772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4433/13/5/772/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos13050772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Gerarldo Davin Aventian; Alfrendo Satyanaga; Aizhan Sagu; Bakytkul Serikbek; Gulnur Pernebekova; Bakhyt Aubakirova; Qian Zhai; Jong Kim;doi: 10.3390/su16010313
The presence of unsaturated soil is critical in geotechnical engineering since the matric suction may aid in accommodating the pile shaft capacity. The design of piles can be optimized by incorporating unsaturated soil mechanics principles. Hence, the amount of waste materials can be reduced, the duration of pile installation can be expedited, and the amount of energy used for casting the pile can be optimized, resulting in more sustainable design and construction of piles. Conventional α, β, and λ methods and modified α, β, and λ methods are the common models that are used for calculating the shaft capacity by incorporating soil–water characteristic curves (SWCCs). However, in our opinion, we feel that the investigation of the influence of seepage infiltration due to rainfall on the shaft capacity of piles, calculated using both analytical means and numerical analysis, has been dealt with inadequately in past studies. The objective of this study is to investigate changes in the shaft pile capacity according to suction changes due to rainwater infiltration for the greater reliability of the pile design, using both analytical and numerical studies with the finite element method (FEM). Sand and kaolin, which are typical components of coarse-grained and fine-grained soil, are used in this study. The laboratory results were incorporated into PLAXIS 3D (Version 22), and a coupled analysis was carried out, utilizing the meteorological conditions in Astana. The results showed that the decreases in matric suction in sand and kaolin are similar after their subjection to rainfall, yet sand produces a higher shaft capacity compared to kaolin. The modified β method offers a higher shaft capacity compared to the other methods due to the effective stress factors being taken into account. The modified α and λ methods are recommended for short piles because they are more sustainable, whilst the modified β method is preferable for long piles. Overall, unsaturated soil conditions should be applied to optimize the foundation design since they generate a higher shaft capacity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16010313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16010313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:EDP Sciences Alfrendo Satyanaga; Qian Zhai; H. Rahardjo; Gilson de Farias Neves Gitirana; Soo Young Moon; Jong Kim;Capillary barrier system (CBS) was developed as a slope protection method to prevent rainwater infiltration into the underlying soil based on the principle of unsaturated soil mechanics by harnessing the distinct difference in hydraulic properties of a fine-grained layer with those of a coarse-grained layer of soils. The CBS is commonly designed and constructed using gravel as coarse-grained material and fine sand as fine-grained material. However, due to scarcity of natural aggregates and in consideration of environmental sustainability, there is a need to utilize recycled materials in capillary barrier system. In this project, coarse and fine recycled concrete were used as the coarse- and fine-grained materials, respectively. The appearance of CBS was enhanced with an additional layer of approved soil mixture (ASM) to incorporate vegetation as green cover. CBS as a sustainable slope cover has been constructed for slope protection surrounding basement carpark in the new public housing development at Matilda, Singapore. The design, construction and monitoring system for the CBS are presented and discussed in this paper. The field measurement data provide verification of the performance of the CBS. Both field measurement and numerical analyses demonstrated that CBS performed well as designed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/202133703021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/202133703021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SingaporePublisher:MDPI AG Abdul Halim Hamdany; Martin Wijaya; Alfrendo Satyanaga; Harianto Rahardjo; Zhai Qian; Aswin Lim; Jong Kim;doi: 10.3390/su15118653
handle: 10356/169396
Soil suction plays an important role in governing the stability of slopes. Environmental sustainability could be jeopardized by hazards, such as slope failures (forest destruction, landscape alteration, etc.). However, the quantification of the suction effect on slope stability is a challenging task as the soil suction is usually affected by the precipitation and evapotranspiration. Numerical simulation plays an important role in the estimation of contour in soil suction due to rainfall and evapotranspiration as long-term and widespread monitoring is rarely conducted. The result of numerical simulation is highly dependent on the accuracy of the input parameters. Hence, suction monitoring plays an important role in verifying the result of numerical simulation. However, as a conventional tensiometer is limited to 100 kPa soil suction, it is hard to verify the performance of numerical simulation where suction is higher than 100 kPa. The osmotic tensiometer developed by Nanyang Technological University (NTU) can overcome this problem. It is now possible to monitor changes in soil suction higher than 100 kPa (up to 2500 kPa) for an extended period in the field. In this study, a procedure was proposed to estimate suction changes in residual soil based on rainfall and evapotranspiration data. Numerical simulation was carried out based on the soil properties and geometry of a residual soil slope from Jurong Formation Singapore. Changes in soil suction due to rainfall and evaporation were simulated and compared with the readings from the NTU osmotic tensiometers installed at 0.15 m and 0.50 m from the slope surface in the field. It was observed that numerical simulation was able to capture the variations of suctions accurately at greater depths. However, at shallow depths, erratic suction changes due to difficulties in capturing transpiration.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169396Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15118653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169396Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15118653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Sonny Irawan; Dennis Delali Kwesi Wayo; Alfrendo Satyanaga; Jong Kim;The conventional well placement was done manually by using a numerical reservoir simulator, and it required a lengthy trial-and-error process. It required great experience and expertise to manipulate the variables and uncertainties that lie on the reservoir to determine the best placement of the well. In addition, the traditional gradient-based methods such as Line-search and Trust-region were not viable in terms of maximum results obtained. Gradient-based methods were too dependent on the surface gradient of the solution and may only converge to local optima instead of global optima. Complex reservoirs have rough surfaces with high uncertainties, which hinders the traditional gradient-based method from converging to global optima. Thus, genetic algorithms were utilized to automate the manual trial-and-error process and to overcome the limitations of the traditional gradient-based method. The objectives of this study were to analyse the effect of different initial well placement distributions, the number of random solution sizes, and the crossover rate on cumulative oil production. A synthetic reservoir model built using CMG Builder was used as the testing platform for the optimization problems. Well-placement parameterization and optimization set-up were carried out using the CMG CMOST optimization tool. The integration of CMG IMEX and CMOST optimized cumulative oil production based on the objectives of the study. The results obtained showed that the higher number of random solutions used resulted in higher cumulative oil production, with more generations needed to reach the optimum solution. It can be concluded that the larger number of random solutions used increased the probability of reaching the optimum solution, but will take more generations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202402.1677.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202402.1677.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Dennis Delali Kwesi Wayo; Sonny Irawan; Alfrendo Satyanaga; Ghulam Abbas;doi: 10.3390/en16104185
Drilling bits are essential downhole hardware that facilitates drilling operations in high-pressure, high-temperature regions and in most carbonate reservoirs in the world. While the drilling process can be optimized, drilling operators and engineers become curious about how drill bits react during rock breaking and penetration. Since it is experimentally expensive to determine, the goal of the study is to maximize the rate of penetration by modeling fluid interactions around the roller cone drilling bit (RCDB), specifying a suitable number of jet nozzles and venturi effects for non-Newtonian fluids (synthetic-based muds), and examining the effects of mud particles and drill cuttings. Ansys Fluent k-epsilon turbulence viscous model, a second order upwind for momentum, turbulent kinetic energy, and dissipation rate, were used to model the specified 1000 kg/m3 non-Newtonian fluid around the roller cone drill bit. The original geometry of the nozzles was adapted from a Chinese manufacturer whose tricone had three jet nozzles. The results of our six redesigned jet nozzles (3 outer, 39.12 mm, and 3 proximal, 20 mm) sought to offer maximum potential for drilling optimization. However, at a pressure of 9.39 × 104 Pa, the wellbore with particle sizes between 0.10 mm and 4.2 mm drill cuttings observed an improved rate of penetration with a rotation speed of 150 r/min.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/10/4185/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/10/4185/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SingaporePublisher:MDPI AG Xuebo Li; Tianlun Shen; Ke Xiang; Qian Zhai; Harianto Rahardjo; Alfrendo Satyanaga; Shijun Wang;doi: 10.3390/su15031822
handle: 10356/169394
Rainwater infiltration is primarily governed by the soil-water characteristic curve (SWCC) and hydraulic conductivity function (HCF) of soil. Both the SWCC and the HCF are hysteretic during the drying and wetting processes. In a numerical simulation, different seepage results can be obtained by incorporating different hydraulic conductivity functions of soil. In practice, the wetting HCF is commonly estimated from the wetting SWCC using the statistical method, which is named HCFswcc,w in this note. However, there is no study that has verified the results from seepage analyses using HCFswcc,w. Therefore, the objective of this study is to investigate the influence of wetting SWCC and wetting HCF on 1-D water infiltration. The results from the numerical simulations were verified with the instrumentation reading from a soil column. It was observed that the results from the model using wetting HCFPSDF, which defines the wetting HCF estimated using the concept of pore-size distribution function, gave better agreement with the instrumented data. Therefore, both wetting SWCC and wetting HCFPSDF are advised to be used as input information for the numerical simulation of rainwater infiltration.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169394Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10356/169394Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Lixian Tang; Qiang Zhou; Shoulong Wang; Wenjie Yao; Bowei Zhang; Ke Xiang; Alfrendo Satyanaga; Jin Tao;doi: 10.3390/su142316230
The transportation system is one of the major infrastructures in urban areas, and it serves 56% of the world’s population. Nowadays, metro lines are developing fast in urban areas. Due to the restrictions of urban fields, metro lines are usually not planned straight, and a curved line is required to connect stations in different locations in a city. As a result, small curvature tunnels are commonly constructed in urban areas. The tunneling construction in a city area may cause ground settlement, which is sensitive to surrounding buildings and underground utilities. The aim of this study is to explore the impact of curvature alignment on the ground settlement. In this paper, ground settlements induced by small curvature shield tunneling were evaluated by using a numerical analysis. A total of six cases were selected for the analysis. The results obtained from the numerical simulations were compared with Peck’s equation. It is observed that Peck’s equation can be used for the estimation of the maximum settlement. However, the ground settlements on both sides of the central axis of the curved tunnel are asymmetrical, and Peck’s equation, which provides a symmetrical settlement, may not be applicable in the case of small curvature tunnels.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142316230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142316230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu