- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, France, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | VERIFY, EC | REDDCopernicusEC| VERIFY ,EC| REDDCopernicusAlexandra Tyukavina; Nancy L. Harris; Alessandro Baccini; Sassan Saatchi; Sassan Saatchi; Martin Herold; Rosa Maria Roman-Cuesta; Richard A. Birdsey; Lola Fatoyinbo; Daniela Requena Suarez; Christy M. Slay; Richard A. Houghton; Peter Potapov; Mary Farina; Matthew C. Hansen; Sytze de Bruin; David Gibbs; Svetlana Turubanova;handle: 10568/111717
Managing forests for climate change mitigation requires action by diverse stakeholders undertaking different activities with overlapping objectives and spatial impacts. To date, several forest carbon monitoring systems have been developed for different regions using various data, methods and assumptions, making it difficult to evaluate mitigation performance consistently across scales. Here, we integrate ground and Earth observation data to map annual forest-related greenhouse gas emissions and removals globally at a spatial resolution of 30 m over the years 2001–2019. We estimate that global forests were a net carbon sink of −7.6 ± 49 GtCO2e yr−1, reflecting a balance between gross carbon removals (−15.6 ± 49 GtCO2e yr−1) and gross emissions from deforestation and other disturbances (8.1 ± 2.5 GtCO2e yr−1). The geospatial monitoring framework introduced here supports climate policy development by promoting alignment and transparency in setting priorities and tracking collective progress towards forest-specific climate mitigation goals with both local detail and global consistency.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111717Data sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-020-00976-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 687 citations 687 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111717Data sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-020-00976-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Peter Potapov; John R. Townshend; Matthew C. Hansen; Eric Vermote; Xiao-Peng Song; Stephen V. Stehman; Alexandra Tyukavina;Land change is a cause and consequence of global environmental change1,2. Changes in land use and land cover considerably alter the Earth's energy balance and biogeochemical cycles, which contributes to climate change and-in turn-affects land surface properties and the provision of ecosystem services1-4. However, quantification of global land change is lacking. Here we analyse 35 years' worth of satellite data and provide a comprehensive record of global land-change dynamics during the period 1982-2016. We show that-contrary to the prevailing view that forest area has declined globally5-tree cover has increased by 2.24 million km2 (+7.1% relative to the 1982 level). This overall net gain is the result of a net loss in the tropics being outweighed by a net gain in the extratropics. Global bare ground cover has decreased by 1.16 million km2 (-3.1%), most notably in agricultural regions in Asia. Of all land changes, 60% are associated with direct human activities and 40% with indirect drivers such as climate change. Land-use change exhibits regional dominance, including tropical deforestation and agricultural expansion, temperate reforestation or afforestation, cropland intensification and urbanization. Consistently across all climate domains, montane systems have gained tree cover and many arid and semi-arid ecosystems have lost vegetation cover. The mapped land changes and the driver attributions reflect a human-dominated Earth system. The dataset we developed may be used to improve the modelling of land-use changes, biogeochemical cycles and vegetation-climate interactions to advance our understanding of global environmental change1-4,6.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-018-0411-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1K citations 1,448 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-018-0411-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Review , Journal 2017Embargo end date: 09 Aug 2017 Netherlands, Switzerland, Netherlands, France, Belgium, Netherlands, Netherlands, GermanyPublisher:Copernicus GmbH Funded by:ANR | L-IPSL, EC | GEOCARBON, FCT | Center for Environmental ... +1 projectsANR| L-IPSL ,EC| GEOCARBON ,FCT| Center for Environmental and Sustainability Research ,EC| BACIJ. Zscheischler; J. Zscheischler; M. D. Mahecha; M. D. Mahecha; M. D. Mahecha; V. Avitabile; L. Calle; N. Carvalhais; N. Carvalhais; P. Ciais; F. Gans; N. Gruber; J. Hartmann; M. Herold; K. Ichii; K. Ichii; M. Jung; P. Landschützer; P. Landschützer; G. G. Laruelle; R. Lauerwald; R. Lauerwald; D. Papale; P. Peylin; B. Poulter; B. Poulter; D. Ray; P. Regnier; C. Rödenbeck; R. M. Roman-Cuesta; C. Schwalm; G. Tramontana; A. Tyukavina; R. Valentini; G. van der Werf; T. O. West; J. E. Wolf; M. Reichstein; M. Reichstein; M. Reichstein;Abstract. Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr−1), East Asia (1.6 ± 0.3 PgC yr−1), South Asia (0.3 ± 0.1 PgC yr−1), Australia (0.2 ± 0.3 PgC yr−1), and most of the Ocean regions. Our NCE estimates give a likely too large CO2 sink in tropical areas such as the Amazon, Congo, and Indonesia. Overall, and because of the overestimated CO2 uptake in tropical lands, our global bottom-up NCE amounts to a net sink of −5.4 ± 2.0 PgC yr−1. By contrast, the accurately measured mean atmospheric growth rate of CO2 over 2001–2010 indicates that the true value of NCE is a net CO2 source of 4.3 ± 0.1 PgC yr−1. This mismatch of nearly 10 PgC yr−1 highlights observational gaps and limitations of data-driven models in tropical lands, but also in North America. Our uncertainty assessment provides the basis for setting priority regions where to increase carbon observations in the future. High on the priority list are tropical land regions, which suffer from a lack of in situ observations. Second, extensive pCO2 data are missing in the Southern Ocean. Third, we lack observations that could enable seasonal estimates of shelf, estuary, and inland water–atmosphere C exchange. Our consistent derivation of data uncertainties could serve as prior knowledge in multicriteria optimization such as the Carbon Cycle Data Assimilation System (CCDAS) and atmospheric inversions, without over- or under-stating bottom-up data credibility. In the future, NCE estimates of carbon sinks could be aggregated at national scale to compare with the official national inventories of CO2 fluxes in the land use, land use change, and forestry sector, upon which future emission reductions are proposed.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Other literature type . 2017Data sources: DANS (Data Archiving and Networked Services)Biogeosciences (BG)Review . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-3685-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Other literature type . 2017Data sources: DANS (Data Archiving and Networked Services)Biogeosciences (BG)Review . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-3685-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 France, France, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | VERIFY, EC | REDDCopernicusEC| VERIFY ,EC| REDDCopernicusAlexandra Tyukavina; Nancy L. Harris; Alessandro Baccini; Sassan Saatchi; Sassan Saatchi; Martin Herold; Rosa Maria Roman-Cuesta; Richard A. Birdsey; Lola Fatoyinbo; Daniela Requena Suarez; Christy M. Slay; Richard A. Houghton; Peter Potapov; Mary Farina; Matthew C. Hansen; Sytze de Bruin; David Gibbs; Svetlana Turubanova;handle: 10568/111717
Managing forests for climate change mitigation requires action by diverse stakeholders undertaking different activities with overlapping objectives and spatial impacts. To date, several forest carbon monitoring systems have been developed for different regions using various data, methods and assumptions, making it difficult to evaluate mitigation performance consistently across scales. Here, we integrate ground and Earth observation data to map annual forest-related greenhouse gas emissions and removals globally at a spatial resolution of 30 m over the years 2001–2019. We estimate that global forests were a net carbon sink of −7.6 ± 49 GtCO2e yr−1, reflecting a balance between gross carbon removals (−15.6 ± 49 GtCO2e yr−1) and gross emissions from deforestation and other disturbances (8.1 ± 2.5 GtCO2e yr−1). The geospatial monitoring framework introduced here supports climate policy development by promoting alignment and transparency in setting priorities and tracking collective progress towards forest-specific climate mitigation goals with both local detail and global consistency.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111717Data sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-020-00976-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 687 citations 687 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111717Data sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2021Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-020-00976-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Peter Potapov; John R. Townshend; Matthew C. Hansen; Eric Vermote; Xiao-Peng Song; Stephen V. Stehman; Alexandra Tyukavina;Land change is a cause and consequence of global environmental change1,2. Changes in land use and land cover considerably alter the Earth's energy balance and biogeochemical cycles, which contributes to climate change and-in turn-affects land surface properties and the provision of ecosystem services1-4. However, quantification of global land change is lacking. Here we analyse 35 years' worth of satellite data and provide a comprehensive record of global land-change dynamics during the period 1982-2016. We show that-contrary to the prevailing view that forest area has declined globally5-tree cover has increased by 2.24 million km2 (+7.1% relative to the 1982 level). This overall net gain is the result of a net loss in the tropics being outweighed by a net gain in the extratropics. Global bare ground cover has decreased by 1.16 million km2 (-3.1%), most notably in agricultural regions in Asia. Of all land changes, 60% are associated with direct human activities and 40% with indirect drivers such as climate change. Land-use change exhibits regional dominance, including tropical deforestation and agricultural expansion, temperate reforestation or afforestation, cropland intensification and urbanization. Consistently across all climate domains, montane systems have gained tree cover and many arid and semi-arid ecosystems have lost vegetation cover. The mapped land changes and the driver attributions reflect a human-dominated Earth system. The dataset we developed may be used to improve the modelling of land-use changes, biogeochemical cycles and vegetation-climate interactions to advance our understanding of global environmental change1-4,6.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-018-0411-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1K citations 1,448 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-018-0411-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Review , Journal 2017Embargo end date: 09 Aug 2017 Netherlands, Switzerland, Netherlands, France, Belgium, Netherlands, Netherlands, GermanyPublisher:Copernicus GmbH Funded by:ANR | L-IPSL, EC | GEOCARBON, FCT | Center for Environmental ... +1 projectsANR| L-IPSL ,EC| GEOCARBON ,FCT| Center for Environmental and Sustainability Research ,EC| BACIJ. Zscheischler; J. Zscheischler; M. D. Mahecha; M. D. Mahecha; M. D. Mahecha; V. Avitabile; L. Calle; N. Carvalhais; N. Carvalhais; P. Ciais; F. Gans; N. Gruber; J. Hartmann; M. Herold; K. Ichii; K. Ichii; M. Jung; P. Landschützer; P. Landschützer; G. G. Laruelle; R. Lauerwald; R. Lauerwald; D. Papale; P. Peylin; B. Poulter; B. Poulter; D. Ray; P. Regnier; C. Rödenbeck; R. M. Roman-Cuesta; C. Schwalm; G. Tramontana; A. Tyukavina; R. Valentini; G. van der Werf; T. O. West; J. E. Wolf; M. Reichstein; M. Reichstein; M. Reichstein;Abstract. Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr−1), East Asia (1.6 ± 0.3 PgC yr−1), South Asia (0.3 ± 0.1 PgC yr−1), Australia (0.2 ± 0.3 PgC yr−1), and most of the Ocean regions. Our NCE estimates give a likely too large CO2 sink in tropical areas such as the Amazon, Congo, and Indonesia. Overall, and because of the overestimated CO2 uptake in tropical lands, our global bottom-up NCE amounts to a net sink of −5.4 ± 2.0 PgC yr−1. By contrast, the accurately measured mean atmospheric growth rate of CO2 over 2001–2010 indicates that the true value of NCE is a net CO2 source of 4.3 ± 0.1 PgC yr−1. This mismatch of nearly 10 PgC yr−1 highlights observational gaps and limitations of data-driven models in tropical lands, but also in North America. Our uncertainty assessment provides the basis for setting priority regions where to increase carbon observations in the future. High on the priority list are tropical land regions, which suffer from a lack of in situ observations. Second, extensive pCO2 data are missing in the Southern Ocean. Third, we lack observations that could enable seasonal estimates of shelf, estuary, and inland water–atmosphere C exchange. Our consistent derivation of data uncertainties could serve as prior knowledge in multicriteria optimization such as the Carbon Cycle Data Assimilation System (CCDAS) and atmospheric inversions, without over- or under-stating bottom-up data credibility. In the future, NCE estimates of carbon sinks could be aggregated at national scale to compare with the official national inventories of CO2 fluxes in the land use, land use change, and forestry sector, upon which future emission reductions are proposed.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Other literature type . 2017Data sources: DANS (Data Archiving and Networked Services)Biogeosciences (BG)Review . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-3685-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01584280Data sources: Bielefeld Academic Search Engine (BASE)Biogeosciences (BG)Other literature type . 2017Data sources: DANS (Data Archiving and Networked Services)Biogeosciences (BG)Review . 2017GFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff PublicationsArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-3685-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu