Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: André Stapf; Christoph Gondek; Marcus Lippold; Edwin Kroke;

    The wet-chemical treatment of silicon wafers is an important production step in photovoltaic and semiconductor industries. Solutions containing hydrofluoric acid, ammonium peroxodisulfate, and hydrochloric acid were investigated as novel acidic, NOx-free etching mixtures for texturization and polishing of monocrystalline silicon wafers. Etching rates as well as generated surface morphologies and properties are discussed in terms of the composition of the etching mixture. The solutions were analyzed with Raman and UV/vis spectroscopy as well as ion chromatography (IC). The silicon surfaces were investigated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), diffuse reflection infrared spectroscopy (DRIFT), and X-ray photoelectron spectroscopy (XPS). Surprisingly, pyramidal surface structures were found after etching SiC-slurry as well as diamond wire-sawn monocrystalline Si(100) wafers with hydrochloric acid-rich HF-(NH4)2S2O8-HCl mixtures. Acidic etching solutions are generally not known for anisotropic etching. Thus, the HNO3-free mixtures might allow to replace KOH/i-propanol and similar alkaline solutions for texturization of monosilicon wafers at room temperature with less surface contamination. Besides, common HNO3-based etching mixtures may be replaced by the nitrate-free system, leading to significant economic and ecological advantages.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: André Stapf; Christoph Gondek; Marcus Lippold; Edwin Kroke;

    The wet-chemical treatment of silicon wafers is an important production step in photovoltaic and semiconductor industries. Solutions containing hydrofluoric acid, ammonium peroxodisulfate, and hydrochloric acid were investigated as novel acidic, NOx-free etching mixtures for texturization and polishing of monocrystalline silicon wafers. Etching rates as well as generated surface morphologies and properties are discussed in terms of the composition of the etching mixture. The solutions were analyzed with Raman and UV/vis spectroscopy as well as ion chromatography (IC). The silicon surfaces were investigated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), diffuse reflection infrared spectroscopy (DRIFT), and X-ray photoelectron spectroscopy (XPS). Surprisingly, pyramidal surface structures were found after etching SiC-slurry as well as diamond wire-sawn monocrystalline Si(100) wafers with hydrochloric acid-rich HF-(NH4)2S2O8-HCl mixtures. Acidic etching solutions are generally not known for anisotropic etching. Thus, the HNO3-free mixtures might allow to replace KOH/i-propanol and similar alkaline solutions for texturization of monosilicon wafers at room temperature with less surface contamination. Besides, common HNO3-based etching mixtures may be replaced by the nitrate-free system, leading to significant economic and ecological advantages.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: André Stapf; Edwin Kroke; Christoph Gondek; Florian Honeit;

    Abstract Solutions containing hydrofluoric acid (HF), hydrochloric acid (HCl), and hydrogen peroxide (H2O2) were investigated as novel acidic, NOx-free etching mixtures for texturing of monocrystalline silicon wafers. High etch rates of up to 13.3 nm s−1 were observed at room temperature, which are comparable to the etch rates of KOH-IPA solutions. The silicon surface was investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), indicating pyramidal textures for diamond wire and SiC-slurry sawn as well as saw-damage etched (polished) wafers. Non-stirred baths generate random pyramidal structures while constantly stirred solutions generate novel random inverted pyramidal surface structures. The light trapping efficiency of wafers etched by the HF-HCl-H2O2 solutions was compared by UV/vis-reflectivity measurements to KOH/i-propanol specimens indicating lower reflectivities for the HF-HCl-H2O2-treated samples. Using the ‘wafer ray tracer’ (pvlighthouse.com) the light absorption properties of monomodal and random inverted pyramid structures were simulated and compared to well-known random and monomodal textures for PERC solar cells, clearly indicating the best performance for random inverted pyramids. Besides, simulation of a PERC solar cell on a roof top at our university was performed, indicating improved performance, especially for random inverted pyramid textures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: André Stapf; Edwin Kroke; Christoph Gondek; Florian Honeit;

    Abstract Solutions containing hydrofluoric acid (HF), hydrochloric acid (HCl), and hydrogen peroxide (H2O2) were investigated as novel acidic, NOx-free etching mixtures for texturing of monocrystalline silicon wafers. High etch rates of up to 13.3 nm s−1 were observed at room temperature, which are comparable to the etch rates of KOH-IPA solutions. The silicon surface was investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), indicating pyramidal textures for diamond wire and SiC-slurry sawn as well as saw-damage etched (polished) wafers. Non-stirred baths generate random pyramidal structures while constantly stirred solutions generate novel random inverted pyramidal surface structures. The light trapping efficiency of wafers etched by the HF-HCl-H2O2 solutions was compared by UV/vis-reflectivity measurements to KOH/i-propanol specimens indicating lower reflectivities for the HF-HCl-H2O2-treated samples. Using the ‘wafer ray tracer’ (pvlighthouse.com) the light absorption properties of monomodal and random inverted pyramid structures were simulated and compared to well-known random and monomodal textures for PERC solar cells, clearly indicating the best performance for random inverted pyramids. Besides, simulation of a PERC solar cell on a roof top at our university was performed, indicating improved performance, especially for random inverted pyramid textures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: André Stapf; Niklas Zomack; Carmen Bellmann; Nils Schubert; +8 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Journal of Photovoltaics
    Article . 2024 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Journal of Photovoltaics
      Article . 2024 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: André Stapf; Niklas Zomack; Carmen Bellmann; Nils Schubert; +8 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Journal of Photovoltaics
    Article . 2024 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Journal of Photovoltaics
      Article . 2024 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • Authors: André Stapf; Christoph Gondek; Marcus Lippold; Edwin Kroke;

    The wet-chemical treatment of silicon wafers is an important production step in photovoltaic and semiconductor industries. Solutions containing hydrofluoric acid, ammonium peroxodisulfate, and hydrochloric acid were investigated as novel acidic, NOx-free etching mixtures for texturization and polishing of monocrystalline silicon wafers. Etching rates as well as generated surface morphologies and properties are discussed in terms of the composition of the etching mixture. The solutions were analyzed with Raman and UV/vis spectroscopy as well as ion chromatography (IC). The silicon surfaces were investigated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), diffuse reflection infrared spectroscopy (DRIFT), and X-ray photoelectron spectroscopy (XPS). Surprisingly, pyramidal surface structures were found after etching SiC-slurry as well as diamond wire-sawn monocrystalline Si(100) wafers with hydrochloric acid-rich HF-(NH4)2S2O8-HCl mixtures. Acidic etching solutions are generally not known for anisotropic etching. Thus, the HNO3-free mixtures might allow to replace KOH/i-propanol and similar alkaline solutions for texturization of monosilicon wafers at room temperature with less surface contamination. Besides, common HNO3-based etching mixtures may be replaced by the nitrate-free system, leading to significant economic and ecological advantages.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • Authors: André Stapf; Christoph Gondek; Marcus Lippold; Edwin Kroke;

    The wet-chemical treatment of silicon wafers is an important production step in photovoltaic and semiconductor industries. Solutions containing hydrofluoric acid, ammonium peroxodisulfate, and hydrochloric acid were investigated as novel acidic, NOx-free etching mixtures for texturization and polishing of monocrystalline silicon wafers. Etching rates as well as generated surface morphologies and properties are discussed in terms of the composition of the etching mixture. The solutions were analyzed with Raman and UV/vis spectroscopy as well as ion chromatography (IC). The silicon surfaces were investigated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), diffuse reflection infrared spectroscopy (DRIFT), and X-ray photoelectron spectroscopy (XPS). Surprisingly, pyramidal surface structures were found after etching SiC-slurry as well as diamond wire-sawn monocrystalline Si(100) wafers with hydrochloric acid-rich HF-(NH4)2S2O8-HCl mixtures. Acidic etching solutions are generally not known for anisotropic etching. Thus, the HNO3-free mixtures might allow to replace KOH/i-propanol and similar alkaline solutions for texturization of monosilicon wafers at room temperature with less surface contamination. Besides, common HNO3-based etching mixtures may be replaced by the nitrate-free system, leading to significant economic and ecological advantages.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: André Stapf; Edwin Kroke; Christoph Gondek; Florian Honeit;

    Abstract Solutions containing hydrofluoric acid (HF), hydrochloric acid (HCl), and hydrogen peroxide (H2O2) were investigated as novel acidic, NOx-free etching mixtures for texturing of monocrystalline silicon wafers. High etch rates of up to 13.3 nm s−1 were observed at room temperature, which are comparable to the etch rates of KOH-IPA solutions. The silicon surface was investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), indicating pyramidal textures for diamond wire and SiC-slurry sawn as well as saw-damage etched (polished) wafers. Non-stirred baths generate random pyramidal structures while constantly stirred solutions generate novel random inverted pyramidal surface structures. The light trapping efficiency of wafers etched by the HF-HCl-H2O2 solutions was compared by UV/vis-reflectivity measurements to KOH/i-propanol specimens indicating lower reflectivities for the HF-HCl-H2O2-treated samples. Using the ‘wafer ray tracer’ (pvlighthouse.com) the light absorption properties of monomodal and random inverted pyramid structures were simulated and compared to well-known random and monomodal textures for PERC solar cells, clearly indicating the best performance for random inverted pyramids. Besides, simulation of a PERC solar cell on a roof top at our university was performed, indicating improved performance, especially for random inverted pyramid textures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: André Stapf; Edwin Kroke; Christoph Gondek; Florian Honeit;

    Abstract Solutions containing hydrofluoric acid (HF), hydrochloric acid (HCl), and hydrogen peroxide (H2O2) were investigated as novel acidic, NOx-free etching mixtures for texturing of monocrystalline silicon wafers. High etch rates of up to 13.3 nm s−1 were observed at room temperature, which are comparable to the etch rates of KOH-IPA solutions. The silicon surface was investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), indicating pyramidal textures for diamond wire and SiC-slurry sawn as well as saw-damage etched (polished) wafers. Non-stirred baths generate random pyramidal structures while constantly stirred solutions generate novel random inverted pyramidal surface structures. The light trapping efficiency of wafers etched by the HF-HCl-H2O2 solutions was compared by UV/vis-reflectivity measurements to KOH/i-propanol specimens indicating lower reflectivities for the HF-HCl-H2O2-treated samples. Using the ‘wafer ray tracer’ (pvlighthouse.com) the light absorption properties of monomodal and random inverted pyramid structures were simulated and compared to well-known random and monomodal textures for PERC solar cells, clearly indicating the best performance for random inverted pyramids. Besides, simulation of a PERC solar cell on a roof top at our university was performed, indicating improved performance, especially for random inverted pyramid textures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: André Stapf; Niklas Zomack; Carmen Bellmann; Nils Schubert; +8 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Journal of Photovoltaics
    Article . 2024 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Journal of Photovoltaics
      Article . 2024 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: André Stapf; Niklas Zomack; Carmen Bellmann; Nils Schubert; +8 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Journal of Photovoltaics
    Article . 2024 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Phot...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Journal of Photovoltaics
      Article . 2024 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph