- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 NetherlandsPublisher:Elsevier BV Funded by:DFGDFGKarl-Heinz Erb; Meidad Kissinger; Sarah Wolff; Thomas Kastner; Berta Martín-López; Laura López-Hoffman; Jule Thober; Carsten Meyer; Carsten Meyer; Catharina J.E. Schulp; Alexandra Marques; Joachim Maes; Karin Frank; Kenneth J. Bagstad; Jianguo Liu; Matthias Schröter; Aletta Bonn; Aletta Bonn; Sebastian Arnhold; Rob Alkemade; Rob Alkemade; Thomas Koellner;Conserving and managing global natural capital requires an understanding of the complexity of flows of ecosystem services across geographic boundaries. Failing to understand and to incorporate these flows into national and international ecosystem assessments leads to incomplete and potentially skewed conclusions, impairing society's ability to identify sustainable management and policy choices. In this paper, we synthesise existing knowledge and develop a conceptual framework for analysing interregional ecosystem service flows. We synthesise the types of such flows, the characteristics of sending and receiving socio-ecological systems, and the impacts of ecosystem service flows on interregional sustainability. Using four cases (trade of certified coffee, migration of northern pintails, flood protection in the Danube watershed, and information on giant pandas), we test the conceptual framework and show how an enhanced understanding of interregional telecouplings in socio-ecological systems can inform ecosystem service-based decision making and governance with respect to sustainability goals.
Ecosystem Services arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsEcosystem ServicesArticle . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoser.2018.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 176 citations 176 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 5visibility views 5 download downloads 16 Powered bymore_vert Ecosystem Services arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsEcosystem ServicesArticle . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoser.2018.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 05 Apr 2024 GermanyPublisher:Wiley Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivEduardo Arlé; Tiffany Marie Knight; Marina Jiménez‐Muñoz; Dino Biancolini; Jonathan Belmaker; Carsten Meyer;pmid: 38384827
pmc: PMC10880136
AbstractEcological Niche Models (ENMs) are often used to project species distributions within alien ranges and in future climatic scenarios. However, ENMs depend on species‐environment equilibrium, which may be absent for actively expanding species. We present a novel framework to estimate whether species have reached environmental equilibrium in their native and alien ranges. The method is based on the estimation of niche breadth with the accumulation of species occurrences. An asymptote will indicate exhaustive knowledge of the realised niches. We demonstrate the CNA framework for 26 species of mammals, amphibians, and birds. Possible outcomes of the framework include: (1) There is enough data to quantify the native and alien realised niches, allowing us to calculate niche expansion between the native and alien ranges, also indicating that ENMs can be reliably projected to new environmental conditions. (2) The data in the native range is not adequate but an asymptote is reached in the alien realised niche, indicating low confidence in our ability to evaluate niche expansion in the alien range but high confidence in model projections to new environmental conditions within the alien range. (3) There is enough data to quantify the native realised niche, but not enough knowledge about the alien realised niche, hindering the reliability of projections beyond sampled conditions. (4) Both the native and alien ranges do not reach an asymptote, and thus few robust conclusions about the species’ niche or future projections can be made. Our framework can be used to detect species’ environmental equilibrium in both the native and alien ranges, to quantify changes in the realised niche during the invasion processes, and to estimate the likely accuracy of model projections to new environmental conditions.
Share_it arrow_drop_down Share_itArticle . 2024License: CC BYFull-Text: http://dx.doi.org/10.25673/115590Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Share_it arrow_drop_down Share_itArticle . 2024License: CC BYFull-Text: http://dx.doi.org/10.25673/115590Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019 Germany, Netherlands, GermanyPublisher:Wiley Funded by:DFG, DFG | German Centre for Integra...DFG ,DFG| German Centre for Integrative Biodiversity Research - iDivJes Hines; Katharina Gerstner; Jonathan M. Chase; Darren P. Giling; Carsten Meyer; Carsten Meyer; Petr Keil; Dylan Craven; Felix May; Joanne M. Bennett; Joanne M. Bennett; Katherine H. Bannar-Martin; Masha T. van der Sande; Helen Phillips;doi: 10.1111/geb.13165 , 10.1101/769232
AbstractAimBiodiversity and ecosystem productivity vary across the globe, and considerable effort has been made to describe their relationships. Biodiversity and ecosystem functioning research has traditionally focused on how experimentally controlled species richness affects net primary productivity (S → NPP) at small spatial grains. In contrast, the influence of productivity on richness (NPP → S) has been explored at many grains in naturally assembled communities. Mismatches in spatial scale between approaches have fuelled debate about the strength and direction of biodiversity–productivity relationships. Here, we examine the direction and strength of the influence of productivity on diversity (NPP → S) and the influence of diversity on productivity (S → NPP) and how these vary across spatial grains.LocationContiguous USA.Time period1999–2015.Major taxa studiedWoody species (angiosperms and gymnosperms).MethodsUsing data from North American forests at grains from local (672 m2) to coarse spatial units (median area = 35,677 km2), we assess relationships between diversity and productivity using structural equation and random forest models, while accounting for variation in climate, environmental heterogeneity, management and forest age.ResultsWe show that relationships betweenSand NPP strengthen with spatial grain. Within each grain,S → NPP and NPP → Shave similar magnitudes, meaning that processes underlyingS → NPP and NPP → Seither operate simultaneously or that one of them is real and the other is an artefact. At all spatial grains,Swas one of the weakest predictors of forest productivity, which was largely driven by biomass, temperature and forest management and age.Main conclusionsWe conclude that spatial grain mediates relationships between biodiversity and productivity in real‐world ecosystems and that results supporting predictions from each approach (NPP → SandS → NPP) serve as an impetus for future studies testing underlying mechanisms. Productivity–diversity relationships emerge at multiple spatial grains, which should widen the focus of national and global policy and research to larger spatial grains.
bioRxiv arrow_drop_down Global Ecology and BiogeographyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Göttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert bioRxiv arrow_drop_down Global Ecology and BiogeographyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Göttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, Netherlands, Germany, United Kingdom, Austria, Czech Republic, Austria, Germany, France, Netherlands, Spain, Czech RepublicPublisher:Wiley Funded by:FWF | The Global Naturalized Al..., DFG | German Centre for Integra...FWF| The Global Naturalized Alien Flora (GloNAF) database ,DFG| German Centre for Integrative Biodiversity Research - iDivJesper Erenskjold Moeslund; Bernd Lenzner; Qiang Yang; Franz Essl; Rense Haveman; Caroline Brunel; Petr Pyšek; Patrick Weigelt; Mark van Kleunen; Mark van Kleunen; Jens-Christian Svenning; Jan Pergl; Carsten Meyer; Trevor S. Fristoe; Jonathan Lenoir; Holger Kreft; Wayne Dawson; Thomas Wohlgemuth; Milan Chytrý; Robin Pouteau; Idoia Biurrun; Carsten Hobohm; Florian Jansen; Wilfried Thuiller;doi: 10.1111/ddi.13378
handle: 11353/10.1597353
AbstractAimsThe rapid increase in the number of species that have naturalized beyond their native range is among the most apparent features of the Anthropocene. How alien species will respond to other processes of future global changes is an emerging concern and remains poorly misunderstood. We therefore ask whether naturalized species will respond to climate and land use change differently than those species not yet naturalized anywhere in the world.LocationGlobal.MethodsWe investigated future changes in the potential alien range of vascular plant species endemic to Europe that are either naturalized (n = 272) or not yet naturalized (1,213) outside of Europe. Potential ranges were estimated based on projections of species distribution models using 20 future climate‐change scenarios. We mapped current and future global centres of naturalization risk. We also analysed expected changes in latitudinal, elevational and areal extent of species’ potential alien ranges.ResultsWe showed a large potential for more worldwide naturalizations of European plants currently and in the future. The centres of naturalization risk for naturalized and non‐naturalized plants largely overlapped, and their location did not change much under projected future climates. Nevertheless, naturalized plants had their potential range shifting poleward over larger distances, whereas the non‐naturalized ones had their potential elevational ranges shifting further upslope under the most severe climate change scenarios. As a result, climate and land use changes are predicted to shrink the potential alien range of European plants, but less so for already naturalized than for non‐naturalized species.Main conclusionsWhile currently non‐naturalized plants originate frequently from mountain ranges or boreal and Mediterranean biomes in Europe, the naturalized ones usually occur at low elevations, close to human centres of activities. As the latter are expected to increase worldwide, this could explain why the potential alien range of already naturalized plants will shrink less.
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2021 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/34794/1/34794.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2021License: CC BYFull-Text: http://dro.dur.ac.uk/34794/Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONRepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2021 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/34794/1/34794.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2021License: CC BYFull-Text: http://dro.dur.ac.uk/34794/Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONRepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Remelgado, Ruben; Meyer, Carsten;Losses and gains in canopy cover of the world’s tree canopies affect carbon stocks, species habitats, water cycles, and human livelihoods. Consistent and multi-decadal global data on tree-canopy cover dynamics are needed for modelling climate scenarios, tracking progress towards restoration targets, and diverse other research, management and policy applications. However, most data only map binary ‘forest’/‘non forest’ distinctions that are regionally restricted or biassed by data gaps, and those mapping tree-canopy cover are limited to the 21st century. Here, we present an annual and global time-series of tree-canopy cover between 1992 and 2018. To develop these data, we integrated complementary products, using their respective strengths to compensate for weaknesses, and exploiting path dependencies in change processes to derive predictions into the data-sparse 1990s. Our model validation indicates we can accurately map tree-canopy cover (r2=0.95 [±0.01], RMSE=6.75% [±0.08], F1-score=0.97 [±0.0]) and our time-series agree well with national forest statistics (r2=0.94 [±0.0]). This repository contains the Global Tree-Canopy Cover Change dataset (GTCCC), which consists of a global time-series on per-pixel tree-canopy covers estimated at a 300-m resolution between 1992 and 2018. The repository contains the following: GTCCC_canopyDensity.tar.gz - Annual GeoTiffs on per-piel tree-canopy cover estimates (EPSG:4326) GTCCC_uncertainty.tar.gz - Annual GeotiFFs with per-pixel estimates of the 95% confidence interval of the the predictions of each RFReg decision tree. GTCCC_change.tar.gz - Multiple outputs describing changes in tree-canopy cover between 1992 and 2018. The contents are described in a README.txt file found within. modelling_infrastructure.tar.gz - Infrastructure to generate the GTCCC dataset, including code, and some intermediary outputs, such as reference samples and the predictive model. The contents are described in a README.txt file found within. The predictors used to generate the GTCCC are provided separately given large volume, and can be reached by clicking here.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7901289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7901289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 NetherlandsPublisher:Elsevier BV Funded by:DFGDFGKarl-Heinz Erb; Meidad Kissinger; Sarah Wolff; Thomas Kastner; Berta Martín-López; Laura López-Hoffman; Jule Thober; Carsten Meyer; Carsten Meyer; Catharina J.E. Schulp; Alexandra Marques; Joachim Maes; Karin Frank; Kenneth J. Bagstad; Jianguo Liu; Matthias Schröter; Aletta Bonn; Aletta Bonn; Sebastian Arnhold; Rob Alkemade; Rob Alkemade; Thomas Koellner;Conserving and managing global natural capital requires an understanding of the complexity of flows of ecosystem services across geographic boundaries. Failing to understand and to incorporate these flows into national and international ecosystem assessments leads to incomplete and potentially skewed conclusions, impairing society's ability to identify sustainable management and policy choices. In this paper, we synthesise existing knowledge and develop a conceptual framework for analysing interregional ecosystem service flows. We synthesise the types of such flows, the characteristics of sending and receiving socio-ecological systems, and the impacts of ecosystem service flows on interregional sustainability. Using four cases (trade of certified coffee, migration of northern pintails, flood protection in the Danube watershed, and information on giant pandas), we test the conceptual framework and show how an enhanced understanding of interregional telecouplings in socio-ecological systems can inform ecosystem service-based decision making and governance with respect to sustainability goals.
Ecosystem Services arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsEcosystem ServicesArticle . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoser.2018.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 176 citations 176 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 5visibility views 5 download downloads 16 Powered bymore_vert Ecosystem Services arrow_drop_down Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsEcosystem ServicesArticle . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoser.2018.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 05 Apr 2024 GermanyPublisher:Wiley Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivEduardo Arlé; Tiffany Marie Knight; Marina Jiménez‐Muñoz; Dino Biancolini; Jonathan Belmaker; Carsten Meyer;pmid: 38384827
pmc: PMC10880136
AbstractEcological Niche Models (ENMs) are often used to project species distributions within alien ranges and in future climatic scenarios. However, ENMs depend on species‐environment equilibrium, which may be absent for actively expanding species. We present a novel framework to estimate whether species have reached environmental equilibrium in their native and alien ranges. The method is based on the estimation of niche breadth with the accumulation of species occurrences. An asymptote will indicate exhaustive knowledge of the realised niches. We demonstrate the CNA framework for 26 species of mammals, amphibians, and birds. Possible outcomes of the framework include: (1) There is enough data to quantify the native and alien realised niches, allowing us to calculate niche expansion between the native and alien ranges, also indicating that ENMs can be reliably projected to new environmental conditions. (2) The data in the native range is not adequate but an asymptote is reached in the alien realised niche, indicating low confidence in our ability to evaluate niche expansion in the alien range but high confidence in model projections to new environmental conditions within the alien range. (3) There is enough data to quantify the native realised niche, but not enough knowledge about the alien realised niche, hindering the reliability of projections beyond sampled conditions. (4) Both the native and alien ranges do not reach an asymptote, and thus few robust conclusions about the species’ niche or future projections can be made. Our framework can be used to detect species’ environmental equilibrium in both the native and alien ranges, to quantify changes in the realised niche during the invasion processes, and to estimate the likely accuracy of model projections to new environmental conditions.
Share_it arrow_drop_down Share_itArticle . 2024License: CC BYFull-Text: http://dx.doi.org/10.25673/115590Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Share_it arrow_drop_down Share_itArticle . 2024License: CC BYFull-Text: http://dx.doi.org/10.25673/115590Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019 Germany, Netherlands, GermanyPublisher:Wiley Funded by:DFG, DFG | German Centre for Integra...DFG ,DFG| German Centre for Integrative Biodiversity Research - iDivJes Hines; Katharina Gerstner; Jonathan M. Chase; Darren P. Giling; Carsten Meyer; Carsten Meyer; Petr Keil; Dylan Craven; Felix May; Joanne M. Bennett; Joanne M. Bennett; Katherine H. Bannar-Martin; Masha T. van der Sande; Helen Phillips;doi: 10.1111/geb.13165 , 10.1101/769232
AbstractAimBiodiversity and ecosystem productivity vary across the globe, and considerable effort has been made to describe their relationships. Biodiversity and ecosystem functioning research has traditionally focused on how experimentally controlled species richness affects net primary productivity (S → NPP) at small spatial grains. In contrast, the influence of productivity on richness (NPP → S) has been explored at many grains in naturally assembled communities. Mismatches in spatial scale between approaches have fuelled debate about the strength and direction of biodiversity–productivity relationships. Here, we examine the direction and strength of the influence of productivity on diversity (NPP → S) and the influence of diversity on productivity (S → NPP) and how these vary across spatial grains.LocationContiguous USA.Time period1999–2015.Major taxa studiedWoody species (angiosperms and gymnosperms).MethodsUsing data from North American forests at grains from local (672 m2) to coarse spatial units (median area = 35,677 km2), we assess relationships between diversity and productivity using structural equation and random forest models, while accounting for variation in climate, environmental heterogeneity, management and forest age.ResultsWe show that relationships betweenSand NPP strengthen with spatial grain. Within each grain,S → NPP and NPP → Shave similar magnitudes, meaning that processes underlyingS → NPP and NPP → Seither operate simultaneously or that one of them is real and the other is an artefact. At all spatial grains,Swas one of the weakest predictors of forest productivity, which was largely driven by biomass, temperature and forest management and age.Main conclusionsWe conclude that spatial grain mediates relationships between biodiversity and productivity in real‐world ecosystems and that results supporting predictions from each approach (NPP → SandS → NPP) serve as an impetus for future studies testing underlying mechanisms. Productivity–diversity relationships emerge at multiple spatial grains, which should widen the focus of national and global policy and research to larger spatial grains.
bioRxiv arrow_drop_down Global Ecology and BiogeographyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Göttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert bioRxiv arrow_drop_down Global Ecology and BiogeographyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Göttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, Netherlands, Germany, United Kingdom, Austria, Czech Republic, Austria, Germany, France, Netherlands, Spain, Czech RepublicPublisher:Wiley Funded by:FWF | The Global Naturalized Al..., DFG | German Centre for Integra...FWF| The Global Naturalized Alien Flora (GloNAF) database ,DFG| German Centre for Integrative Biodiversity Research - iDivJesper Erenskjold Moeslund; Bernd Lenzner; Qiang Yang; Franz Essl; Rense Haveman; Caroline Brunel; Petr Pyšek; Patrick Weigelt; Mark van Kleunen; Mark van Kleunen; Jens-Christian Svenning; Jan Pergl; Carsten Meyer; Trevor S. Fristoe; Jonathan Lenoir; Holger Kreft; Wayne Dawson; Thomas Wohlgemuth; Milan Chytrý; Robin Pouteau; Idoia Biurrun; Carsten Hobohm; Florian Jansen; Wilfried Thuiller;doi: 10.1111/ddi.13378
handle: 11353/10.1597353
AbstractAimsThe rapid increase in the number of species that have naturalized beyond their native range is among the most apparent features of the Anthropocene. How alien species will respond to other processes of future global changes is an emerging concern and remains poorly misunderstood. We therefore ask whether naturalized species will respond to climate and land use change differently than those species not yet naturalized anywhere in the world.LocationGlobal.MethodsWe investigated future changes in the potential alien range of vascular plant species endemic to Europe that are either naturalized (n = 272) or not yet naturalized (1,213) outside of Europe. Potential ranges were estimated based on projections of species distribution models using 20 future climate‐change scenarios. We mapped current and future global centres of naturalization risk. We also analysed expected changes in latitudinal, elevational and areal extent of species’ potential alien ranges.ResultsWe showed a large potential for more worldwide naturalizations of European plants currently and in the future. The centres of naturalization risk for naturalized and non‐naturalized plants largely overlapped, and their location did not change much under projected future climates. Nevertheless, naturalized plants had their potential range shifting poleward over larger distances, whereas the non‐naturalized ones had their potential elevational ranges shifting further upslope under the most severe climate change scenarios. As a result, climate and land use changes are predicted to shrink the potential alien range of European plants, but less so for already naturalized than for non‐naturalized species.Main conclusionsWhile currently non‐naturalized plants originate frequently from mountain ranges or boreal and Mediterranean biomes in Europe, the naturalized ones usually occur at low elevations, close to human centres of activities. As the latter are expected to increase worldwide, this could explain why the potential alien range of already naturalized plants will shrink less.
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2021 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/34794/1/34794.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2021License: CC BYFull-Text: http://dro.dur.ac.uk/34794/Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONRepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2021 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/34794/1/34794.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2021License: CC BYFull-Text: http://dro.dur.ac.uk/34794/Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03299311Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2021License: CC BYARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONRepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsKonstanzer Online-Publikations-SystemArticle . 2021Data sources: Konstanzer Online-Publikations-SystemInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.13378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Remelgado, Ruben; Meyer, Carsten;Losses and gains in canopy cover of the world’s tree canopies affect carbon stocks, species habitats, water cycles, and human livelihoods. Consistent and multi-decadal global data on tree-canopy cover dynamics are needed for modelling climate scenarios, tracking progress towards restoration targets, and diverse other research, management and policy applications. However, most data only map binary ‘forest’/‘non forest’ distinctions that are regionally restricted or biassed by data gaps, and those mapping tree-canopy cover are limited to the 21st century. Here, we present an annual and global time-series of tree-canopy cover between 1992 and 2018. To develop these data, we integrated complementary products, using their respective strengths to compensate for weaknesses, and exploiting path dependencies in change processes to derive predictions into the data-sparse 1990s. Our model validation indicates we can accurately map tree-canopy cover (r2=0.95 [±0.01], RMSE=6.75% [±0.08], F1-score=0.97 [±0.0]) and our time-series agree well with national forest statistics (r2=0.94 [±0.0]). This repository contains the Global Tree-Canopy Cover Change dataset (GTCCC), which consists of a global time-series on per-pixel tree-canopy covers estimated at a 300-m resolution between 1992 and 2018. The repository contains the following: GTCCC_canopyDensity.tar.gz - Annual GeoTiffs on per-piel tree-canopy cover estimates (EPSG:4326) GTCCC_uncertainty.tar.gz - Annual GeotiFFs with per-pixel estimates of the 95% confidence interval of the the predictions of each RFReg decision tree. GTCCC_change.tar.gz - Multiple outputs describing changes in tree-canopy cover between 1992 and 2018. The contents are described in a README.txt file found within. modelling_infrastructure.tar.gz - Infrastructure to generate the GTCCC dataset, including code, and some intermediary outputs, such as reference samples and the predictive model. The contents are described in a README.txt file found within. The predictors used to generate the GTCCC are provided separately given large volume, and can be reached by clicking here.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7901289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7901289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu