- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: M. Jagadesh; Cherukumalli Srinivasarao; Duraisamy Selvi; Subramanium Thiyageshwari; +10 AuthorsM. Jagadesh; Cherukumalli Srinivasarao; Duraisamy Selvi; Subramanium Thiyageshwari; Thangavel Kalaiselvi; Aradhna Kumari; Santhosh Kumar Singh; Keisar Lourdusamy; Ramalingam Kumaraperumal; Victor Allan; Munmun Dash; P. Raja; U. Surendran; Biswajit Pramanick;doi: 10.3390/su15065520
Accelerating land-use change (LUC) in the Nilgiri Hill Region (NHR) has caused its land to mortify. Although this deterioration has been documented, the destruction of buried gem soil has not been reported. Therefore, this study was conducted to assess the impact of LUC on soil-carbon dynamics in the six major ecosystems in the NHR: croplands (CLs), deciduous forests (DFs), evergreen forests (EFs), forest plantations (FPs), scrublands (SLs), and tea plantations (TPs). Sampling was conducted at selected sites of each ecosystem at three depth classes (0–15, 15–30, and 30–45 cm) to quantify the carbon pools (water-soluble carbon, water-soluble carbohydrates, microbial biomass carbon, microbial biomass nitrogen, dehydrogenase, and different fractions of particulate organic carbon). We found that the LUC significantly decreased the concentration of carbon in the altered ecosystems (49.44–78.38%), with the highest being recorded at EF (10.25%) and DF (7.15%). In addition, the effects of the LUC on the aggregate size of the organic carbon were dissimilar across all the aggregate sizes. The relatively high inputs of the aboveground plant residues and the richer fine-root biomass were accountable for the higher concentration of carbon pools in the untouched EFs and DFs compared to the SLs, FPs, TPs, and CLs. The results of the land-degradation Index (LDI) depicted the higher vulnerability of TP (−72.67) and CL (−79.00). Thus, our findings highlight the global importance of LUC to soil quality. Henceforth, the conservation of carbon pools in fragile ecosystems, such as the NHR, is crucial to keep soils alive and achieve land-degradation neutrality.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5520/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5520/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Aradhna Kumari; Geetha Ajay Lakshmi; Gopinathan Kumar Krishna; Babita Patni; Soban Prakash; Malini Bhattacharyya; Santosh Kumar Singh; Krishan Kumar Verma;Plants are a highly advanced kingdom of living organisms on the earth. They survive under all climatic and weather variabilities, including low and high temperature, rainfall, radiation, less nutrients, and high salinity. Even though they are adapted to various environmental factors, which are variable, the performance of a crop will be compensated under sub/supra optimal conditions. Hence, current and future climate change factors pose a challenge to sustainable agriculture. Photosynthesis is the primary biochemical trait of crops that are affected by abiotic stress and elevated CO2 (eCO2). Under eCO2, the C3 legumes could perform better photosynthesis over C4 grasses. The associated elevated temperature promotes the survival of the C4 crop (maize) over C3 plants. In the American Ginseng, the elevated temperature promotes the accumulation of phytocompounds. Under less water availability, poor transpirational cooling, higher canopy temperatures, and oxidative stress will attenuate the stability of the membrane. Altering the membrane composition to safeguard fluidity is a major tolerance mechanism. For protection and survival under individual or multiple stresses, plants try to undergo high photorespiration and dark respiration, for instance, in wheat and peas. The redox status of plants should be maintained for ROS homeostasis and, thereby, plant survival. The production of antioxidants and secondary metabolites may keep a check on the content of oxidating molecules. Several adaptations, such as deeper rooting, epicuticular wax formation such as peas, and utilization of non-structural carbohydrates, i.e., wheat, help in survival. In addition to yield, quality is a major attribute abridged or augmented by climate change. The nutrient content of cereals, pulses, and vegetables is reduced by eCO2; in aniseed and Valeriana sp., the essential oil content is increased. Thus, climate change has perplexing effects in a species-dependent manner, posing hurdles in sustainable crop production. The review covers various scientific issues interlinked with challenges of food/nutritional security and the resilience of plants to climate variability. This article also glimpses through the research gaps present in the studies about the physiological effects of climate change on various crops.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12123008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12123008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Aradhna Kumari; Munmun Dash; Santosh Kumar Singh; M. Jagadesh; Bhupendra Mathpal; P. K. Mishra; Sunil Kumar Pandey; Krishan K. Verma;pmid: 37940796
Soil microbes are microscopic organisms that inhabit the soil and play a significant role in various ecological processes. They are essential for nutrient cycling, carbon sequestration, and maintaining soil health. Importantly, soil microbes have the potential to sequester carbon dioxide (CO2) from the atmosphere through processes like carbon fixation and storage in organic matter. Unlocking the potential of microbial-driven carbon storage holds the key to revolutionizing climate-smart agricultural practices, paving the way for sustainable productivity and environmental conservation. A fascinating tale of nature's unsung heroes is revealed by delving into the realm of soil microbes. The guardians of the Earth are these tiny creatures that live beneath our feet and discreetly work their magic to fend off the effects of climate change. These microbes are also essential for plant growth enhancement through their roles in nutrient uptake, nitrogen fixation, and synthesis of growth-promoting chemicals. By understanding and managing soil microbial communities, it is possible to improve soil health, soil water-holding capacity, and promote plant growth in agricultural and natural ecosystems. Added to it, these microbes play an important role in biodegradation, bioremediation of heavy metals, and phytoremediation, which in turn helps in treating the contaminated soils. Unfortunately, climate change events affect the diversity, composition, and metabolism of these microbes. Unlocking the microbial potential demands an interdisciplinary endeavor spanning microbiology, ecology, agronomy, and climate science. It is a call to arms for the scientific community to recognize soil microbes as invaluable partners in the fight against climate change. By implementing data-driven land management strategies and pioneering interventions, we possess the means to harness their capabilities, paving the way for climate mitigation, sustainable agriculture, and promote ecosystem resilience in the imminent future.
Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-023-11988-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-023-11988-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: M. Jagadesh; Cherukumalli Srinivasarao; Duraisamy Selvi; Subramanium Thiyageshwari; +10 AuthorsM. Jagadesh; Cherukumalli Srinivasarao; Duraisamy Selvi; Subramanium Thiyageshwari; Thangavel Kalaiselvi; Aradhna Kumari; Santhosh Kumar Singh; Keisar Lourdusamy; Ramalingam Kumaraperumal; Victor Allan; Munmun Dash; P. Raja; U. Surendran; Biswajit Pramanick;doi: 10.3390/su15065520
Accelerating land-use change (LUC) in the Nilgiri Hill Region (NHR) has caused its land to mortify. Although this deterioration has been documented, the destruction of buried gem soil has not been reported. Therefore, this study was conducted to assess the impact of LUC on soil-carbon dynamics in the six major ecosystems in the NHR: croplands (CLs), deciduous forests (DFs), evergreen forests (EFs), forest plantations (FPs), scrublands (SLs), and tea plantations (TPs). Sampling was conducted at selected sites of each ecosystem at three depth classes (0–15, 15–30, and 30–45 cm) to quantify the carbon pools (water-soluble carbon, water-soluble carbohydrates, microbial biomass carbon, microbial biomass nitrogen, dehydrogenase, and different fractions of particulate organic carbon). We found that the LUC significantly decreased the concentration of carbon in the altered ecosystems (49.44–78.38%), with the highest being recorded at EF (10.25%) and DF (7.15%). In addition, the effects of the LUC on the aggregate size of the organic carbon were dissimilar across all the aggregate sizes. The relatively high inputs of the aboveground plant residues and the richer fine-root biomass were accountable for the higher concentration of carbon pools in the untouched EFs and DFs compared to the SLs, FPs, TPs, and CLs. The results of the land-degradation Index (LDI) depicted the higher vulnerability of TP (−72.67) and CL (−79.00). Thus, our findings highlight the global importance of LUC to soil quality. Henceforth, the conservation of carbon pools in fragile ecosystems, such as the NHR, is crucial to keep soils alive and achieve land-degradation neutrality.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5520/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5520/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Aradhna Kumari; Geetha Ajay Lakshmi; Gopinathan Kumar Krishna; Babita Patni; Soban Prakash; Malini Bhattacharyya; Santosh Kumar Singh; Krishan Kumar Verma;Plants are a highly advanced kingdom of living organisms on the earth. They survive under all climatic and weather variabilities, including low and high temperature, rainfall, radiation, less nutrients, and high salinity. Even though they are adapted to various environmental factors, which are variable, the performance of a crop will be compensated under sub/supra optimal conditions. Hence, current and future climate change factors pose a challenge to sustainable agriculture. Photosynthesis is the primary biochemical trait of crops that are affected by abiotic stress and elevated CO2 (eCO2). Under eCO2, the C3 legumes could perform better photosynthesis over C4 grasses. The associated elevated temperature promotes the survival of the C4 crop (maize) over C3 plants. In the American Ginseng, the elevated temperature promotes the accumulation of phytocompounds. Under less water availability, poor transpirational cooling, higher canopy temperatures, and oxidative stress will attenuate the stability of the membrane. Altering the membrane composition to safeguard fluidity is a major tolerance mechanism. For protection and survival under individual or multiple stresses, plants try to undergo high photorespiration and dark respiration, for instance, in wheat and peas. The redox status of plants should be maintained for ROS homeostasis and, thereby, plant survival. The production of antioxidants and secondary metabolites may keep a check on the content of oxidating molecules. Several adaptations, such as deeper rooting, epicuticular wax formation such as peas, and utilization of non-structural carbohydrates, i.e., wheat, help in survival. In addition to yield, quality is a major attribute abridged or augmented by climate change. The nutrient content of cereals, pulses, and vegetables is reduced by eCO2; in aniseed and Valeriana sp., the essential oil content is increased. Thus, climate change has perplexing effects in a species-dependent manner, posing hurdles in sustainable crop production. The review covers various scientific issues interlinked with challenges of food/nutritional security and the resilience of plants to climate variability. This article also glimpses through the research gaps present in the studies about the physiological effects of climate change on various crops.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12123008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12123008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Aradhna Kumari; Munmun Dash; Santosh Kumar Singh; M. Jagadesh; Bhupendra Mathpal; P. K. Mishra; Sunil Kumar Pandey; Krishan K. Verma;pmid: 37940796
Soil microbes are microscopic organisms that inhabit the soil and play a significant role in various ecological processes. They are essential for nutrient cycling, carbon sequestration, and maintaining soil health. Importantly, soil microbes have the potential to sequester carbon dioxide (CO2) from the atmosphere through processes like carbon fixation and storage in organic matter. Unlocking the potential of microbial-driven carbon storage holds the key to revolutionizing climate-smart agricultural practices, paving the way for sustainable productivity and environmental conservation. A fascinating tale of nature's unsung heroes is revealed by delving into the realm of soil microbes. The guardians of the Earth are these tiny creatures that live beneath our feet and discreetly work their magic to fend off the effects of climate change. These microbes are also essential for plant growth enhancement through their roles in nutrient uptake, nitrogen fixation, and synthesis of growth-promoting chemicals. By understanding and managing soil microbial communities, it is possible to improve soil health, soil water-holding capacity, and promote plant growth in agricultural and natural ecosystems. Added to it, these microbes play an important role in biodegradation, bioremediation of heavy metals, and phytoremediation, which in turn helps in treating the contaminated soils. Unfortunately, climate change events affect the diversity, composition, and metabolism of these microbes. Unlocking the microbial potential demands an interdisciplinary endeavor spanning microbiology, ecology, agronomy, and climate science. It is a call to arms for the scientific community to recognize soil microbes as invaluable partners in the fight against climate change. By implementing data-driven land management strategies and pioneering interventions, we possess the means to harness their capabilities, paving the way for climate mitigation, sustainable agriculture, and promote ecosystem resilience in the imminent future.
Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-023-11988-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Monito... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-023-11988-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu