- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Funded by:EC | SHuiEC| SHuiAuthors:Julie Winterová;
Julie Winterová
Julie Winterová in OpenAIREJosef Krása;
Josef Krása
Josef Krása in OpenAIREMiroslav Bauer;
Miroslav Bauer
Miroslav Bauer in OpenAIRENina Noreika;
+1 AuthorsNina Noreika
Nina Noreika in OpenAIREJulie Winterová;
Julie Winterová
Julie Winterová in OpenAIREJosef Krása;
Josef Krása
Josef Krása in OpenAIREMiroslav Bauer;
Miroslav Bauer
Miroslav Bauer in OpenAIRENina Noreika;
Nina Noreika
Nina Noreika in OpenAIRETomáš Dostál;
Tomáš Dostál
Tomáš Dostál in OpenAIREdoi: 10.3390/su14105748
handle: 10261/279278
The Czech landscape has undergone various changes over the last 100 years and has been mainly adapted agriculturally for economic purposes. This has resulted, among other things, in reservoirs being clogged with sediment. The Vrchlice Reservoir was built in 1970 to supply drinking water for around 50,000 inhabitants, and increased sedimentation has been detected in the reservoir in recent years. Water erosion and sediment transport were modeled with WaTEM/SEDEM. Sediment volumes were measured in eight ponds across the watershed for calibration purposes. Modeled results from ponds in watersheds covered mostly with arable lands generally corresponded with the measured values. Although in forested watersheds, the measured sediment volumes greatly exceeded modeled sediment yields, indicating high uncertainty in using USLE-based models in non-agricultural watersheds. The modeled scenarios represented pre-Communist, Communist, and post-Communist eras. For these periods WaTEM/SEDEM was used to evaluate three isolated effects: the effects of various crops on arable lands, the effects of farmland fragmentation, and finally the effects of changes in land use. The change in crops proved to be an important factor causing high siltation rate (potential 23% reduction in sediment yield for historical periods), and land fragmentation played the second important role (potential 15% reduction in sediment yield can be reached by land fragmentation). Across all scenarios, the lowest sediment yield and reservoirs siltation rates were obtained from the pre-Communist and Communist crop share under current land use conditions, and current land use with farmland fragmentation implemented, as it was re-constructed for the pre-Communist era. This supports the idea that the introduction of green areas within arable lands are beneficial to the landscape and can help reduce soil erosion and reservoir siltation.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/5748/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 46 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/5748/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Funded by:EC | SHuiEC| SHuiAuthors:Julie Winterová;
Julie Winterová
Julie Winterová in OpenAIREJosef Krása;
Josef Krása
Josef Krása in OpenAIREMiroslav Bauer;
Miroslav Bauer
Miroslav Bauer in OpenAIRENina Noreika;
+1 AuthorsNina Noreika
Nina Noreika in OpenAIREJulie Winterová;
Julie Winterová
Julie Winterová in OpenAIREJosef Krása;
Josef Krása
Josef Krása in OpenAIREMiroslav Bauer;
Miroslav Bauer
Miroslav Bauer in OpenAIRENina Noreika;
Nina Noreika
Nina Noreika in OpenAIRETomáš Dostál;
Tomáš Dostál
Tomáš Dostál in OpenAIREdoi: 10.3390/su14105748
handle: 10261/279278
The Czech landscape has undergone various changes over the last 100 years and has been mainly adapted agriculturally for economic purposes. This has resulted, among other things, in reservoirs being clogged with sediment. The Vrchlice Reservoir was built in 1970 to supply drinking water for around 50,000 inhabitants, and increased sedimentation has been detected in the reservoir in recent years. Water erosion and sediment transport were modeled with WaTEM/SEDEM. Sediment volumes were measured in eight ponds across the watershed for calibration purposes. Modeled results from ponds in watersheds covered mostly with arable lands generally corresponded with the measured values. Although in forested watersheds, the measured sediment volumes greatly exceeded modeled sediment yields, indicating high uncertainty in using USLE-based models in non-agricultural watersheds. The modeled scenarios represented pre-Communist, Communist, and post-Communist eras. For these periods WaTEM/SEDEM was used to evaluate three isolated effects: the effects of various crops on arable lands, the effects of farmland fragmentation, and finally the effects of changes in land use. The change in crops proved to be an important factor causing high siltation rate (potential 23% reduction in sediment yield for historical periods), and land fragmentation played the second important role (potential 15% reduction in sediment yield can be reached by land fragmentation). Across all scenarios, the lowest sediment yield and reservoirs siltation rates were obtained from the pre-Communist and Communist crop share under current land use conditions, and current land use with farmland fragmentation implemented, as it was re-constructed for the pre-Communist era. This supports the idea that the introduction of green areas within arable lands are beneficial to the landscape and can help reduce soil erosion and reservoir siltation.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/5748/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 46 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/5748/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14105748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 SpainPublisher:MDPI AG Funded by:EC | SHuiEC| SHuiAuthors:Nina Noreika;
Nina Noreika
Nina Noreika in OpenAIREJulie Winterová;
Julie Winterová
Julie Winterová in OpenAIRETailin Li;
Tailin Li
Tailin Li in OpenAIREJosef Krása;
+1 AuthorsJosef Krása
Josef Krása in OpenAIRENina Noreika;
Nina Noreika
Nina Noreika in OpenAIREJulie Winterová;
Julie Winterová
Julie Winterová in OpenAIRETailin Li;
Tailin Li
Tailin Li in OpenAIREJosef Krása;
Josef Krása
Josef Krása in OpenAIRETomáš Dostál;
Tomáš Dostál
Tomáš Dostál in OpenAIREdoi: 10.3390/su132413757
handle: 10261/279275
For the Czech Republic to recover from the effects of past mismanagement, it is necessary to determine how its landscape management can be improved holistically by reinforcing the small water cycle. We conducted a scenario analysis across four time periods using SWAT (Soil and Water Assessment Tool) to determine the effects of land use, land management, and crop rotation shifts since the 1800s in what is now the Czech Republic. The 1852 and 1954 land-use scenarios behaved the most similarly hydrologically across all four scenarios, likely due to minimal landscape transformation and the fact that these two scenarios occur prior to the widespread incorporation of subsurface tile drainages across the landscape. Additionally, the crop rotation of 1920–1938 reinforces the small water cycle the most, while that of 1950–1989 reinforces the small water cycle the least. Diversified crop rotations should be incentivized to farmers, and increasing the areas of forest, brush, and permanent grassland should be prioritized to further reinforce the small water cycle. It is necessary to foster relationships and open communication between watershed managers, landowners, and scientists to improve the small water cycle and to pave the way for successful future hydrological modeling in the Czech Republic.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 68 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 SpainPublisher:MDPI AG Funded by:EC | SHuiEC| SHuiAuthors:Nina Noreika;
Nina Noreika
Nina Noreika in OpenAIREJulie Winterová;
Julie Winterová
Julie Winterová in OpenAIRETailin Li;
Tailin Li
Tailin Li in OpenAIREJosef Krása;
+1 AuthorsJosef Krása
Josef Krása in OpenAIRENina Noreika;
Nina Noreika
Nina Noreika in OpenAIREJulie Winterová;
Julie Winterová
Julie Winterová in OpenAIRETailin Li;
Tailin Li
Tailin Li in OpenAIREJosef Krása;
Josef Krása
Josef Krása in OpenAIRETomáš Dostál;
Tomáš Dostál
Tomáš Dostál in OpenAIREdoi: 10.3390/su132413757
handle: 10261/279275
For the Czech Republic to recover from the effects of past mismanagement, it is necessary to determine how its landscape management can be improved holistically by reinforcing the small water cycle. We conducted a scenario analysis across four time periods using SWAT (Soil and Water Assessment Tool) to determine the effects of land use, land management, and crop rotation shifts since the 1800s in what is now the Czech Republic. The 1852 and 1954 land-use scenarios behaved the most similarly hydrologically across all four scenarios, likely due to minimal landscape transformation and the fact that these two scenarios occur prior to the widespread incorporation of subsurface tile drainages across the landscape. Additionally, the crop rotation of 1920–1938 reinforces the small water cycle the most, while that of 1950–1989 reinforces the small water cycle the least. Diversified crop rotations should be incentivized to farmers, and increasing the areas of forest, brush, and permanent grassland should be prioritized to further reinforce the small water cycle. It is necessary to foster relationships and open communication between watershed managers, landowners, and scientists to improve the small water cycle and to pave the way for successful future hydrological modeling in the Czech Republic.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 68 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Funded by:FWF | Kinetic energy of rainfal...FWF| Kinetic energy of rainfall as driving force of soil detachment and transportAuthors:David Zumr;
David Zumr
David Zumr in OpenAIREDanilo Vítor Mützenberg;
Martin Neumann;Danilo Vítor Mützenberg
Danilo Vítor Mützenberg in OpenAIREJakub Jeřábek;
+7 AuthorsJakub Jeřábek
Jakub Jeřábek in OpenAIREDavid Zumr;
David Zumr
David Zumr in OpenAIREDanilo Vítor Mützenberg;
Martin Neumann;Danilo Vítor Mützenberg
Danilo Vítor Mützenberg in OpenAIREJakub Jeřábek;
Tomáš Laburda;Jakub Jeřábek
Jakub Jeřábek in OpenAIREPetr Kavka;
Petr Kavka
Petr Kavka in OpenAIRELisbeth Lolk Johannsen;
Nives Zambon; Andreas Klik;Lisbeth Lolk Johannsen
Lisbeth Lolk Johannsen in OpenAIREPeter Strauss;
Peter Strauss
Peter Strauss in OpenAIRETomáš Dostál;
Tomáš Dostál
Tomáš Dostál in OpenAIREdoi: 10.3390/su12010157
An experimental laboratory setup was developed and evaluated in order to investigate detachment of soil particles by raindrop splash impact. The soil under investigation was a silty loam Cambisol, which is typical for agricultural fields in Central Europe. The setup consisted of a rainfall simulator and soil samples packed into splash cups (a plastic cylinder with a surface area of 78.5 cm2) positioned in the center of sediment collectors with an outer diameter of 45 cm. A laboratory rainfall simulator was used to simulate rainfall with a prescribed intensity and kinetic energy. Photographs of the soil’s surface before and after the experiments were taken to create digital models of relief and to calculate changes in surface roughness and the rate of soil compaction. The corresponding amount of splashed soil ranged between 10 and 1500 g m−2 h−1. We observed a linear relationship between the rainfall kinetic energy and the amount of the detached soil particles. The threshold kinetic energy necessary to initiate the detachment process was 354 J m−2 h−1. No significant relationship between rainfall kinetic energy and splashed sediment particle-size distribution was observed. The splash erosion process exhibited high variability within each repetition, suggesting a sensitivity of the process to the actual soil surface microtopography.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/157/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/157/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Funded by:FWF | Kinetic energy of rainfal...FWF| Kinetic energy of rainfall as driving force of soil detachment and transportAuthors:David Zumr;
David Zumr
David Zumr in OpenAIREDanilo Vítor Mützenberg;
Martin Neumann;Danilo Vítor Mützenberg
Danilo Vítor Mützenberg in OpenAIREJakub Jeřábek;
+7 AuthorsJakub Jeřábek
Jakub Jeřábek in OpenAIREDavid Zumr;
David Zumr
David Zumr in OpenAIREDanilo Vítor Mützenberg;
Martin Neumann;Danilo Vítor Mützenberg
Danilo Vítor Mützenberg in OpenAIREJakub Jeřábek;
Tomáš Laburda;Jakub Jeřábek
Jakub Jeřábek in OpenAIREPetr Kavka;
Petr Kavka
Petr Kavka in OpenAIRELisbeth Lolk Johannsen;
Nives Zambon; Andreas Klik;Lisbeth Lolk Johannsen
Lisbeth Lolk Johannsen in OpenAIREPeter Strauss;
Peter Strauss
Peter Strauss in OpenAIRETomáš Dostál;
Tomáš Dostál
Tomáš Dostál in OpenAIREdoi: 10.3390/su12010157
An experimental laboratory setup was developed and evaluated in order to investigate detachment of soil particles by raindrop splash impact. The soil under investigation was a silty loam Cambisol, which is typical for agricultural fields in Central Europe. The setup consisted of a rainfall simulator and soil samples packed into splash cups (a plastic cylinder with a surface area of 78.5 cm2) positioned in the center of sediment collectors with an outer diameter of 45 cm. A laboratory rainfall simulator was used to simulate rainfall with a prescribed intensity and kinetic energy. Photographs of the soil’s surface before and after the experiments were taken to create digital models of relief and to calculate changes in surface roughness and the rate of soil compaction. The corresponding amount of splashed soil ranged between 10 and 1500 g m−2 h−1. We observed a linear relationship between the rainfall kinetic energy and the amount of the detached soil particles. The threshold kinetic energy necessary to initiate the detachment process was 354 J m−2 h−1. No significant relationship between rainfall kinetic energy and splashed sediment particle-size distribution was observed. The splash erosion process exhibited high variability within each repetition, suggesting a sensitivity of the process to the actual soil surface microtopography.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/157/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/157/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Funded by:EC | SHuiEC| SHuiAuthors:Nina Noreika;
Nina Noreika
Nina Noreika in OpenAIRETailin Li;
Tailin Li
Tailin Li in OpenAIREDavid Zumr;
David Zumr
David Zumr in OpenAIREJosef Krasa;
+2 AuthorsJosef Krasa
Josef Krasa in OpenAIRENina Noreika;
Nina Noreika
Nina Noreika in OpenAIRETailin Li;
Tailin Li
Tailin Li in OpenAIREDavid Zumr;
David Zumr
David Zumr in OpenAIREJosef Krasa;
Josef Krasa
Josef Krasa in OpenAIRETomas Dostal;
Tomas Dostal
Tomas Dostal in OpenAIRERaghavan Srinivasan;
Raghavan Srinivasan
Raghavan Srinivasan in OpenAIREdoi: 10.3390/su122410596
handle: 10261/253178
In the face of future climate change, Europe has encouraged the adoption of biofuel crops by its farmers. Such land-use changes can have significant impacts on the water balance and hydrological behavior of a system. While the heavy pesticide use associated with biofuel crops has been extensively studied, the water balance impacts of these crops have been far less studied. We conducted scenario analyses using the Soil and Water Assessment Tool (SWAT) to determine the effects of farm-scale biofuel crop adoption (rapeseed) on a basin’s water balance. We found that rapeseed adoption does not support the goal of developing a sustainable agricultural landscape in the Czech Republic. The adoption of rapeseed also had disproportionate effects on a basin’s water balance depending on its location in the basin. Additionally, discharge (especially surface runoff ratios), evapotranspiration, and available soil water content display significant shifts in the rapeseed adoption scenarios.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 38 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Funded by:EC | SHuiEC| SHuiAuthors:Nina Noreika;
Nina Noreika
Nina Noreika in OpenAIRETailin Li;
Tailin Li
Tailin Li in OpenAIREDavid Zumr;
David Zumr
David Zumr in OpenAIREJosef Krasa;
+2 AuthorsJosef Krasa
Josef Krasa in OpenAIRENina Noreika;
Nina Noreika
Nina Noreika in OpenAIRETailin Li;
Tailin Li
Tailin Li in OpenAIREDavid Zumr;
David Zumr
David Zumr in OpenAIREJosef Krasa;
Josef Krasa
Josef Krasa in OpenAIRETomas Dostal;
Tomas Dostal
Tomas Dostal in OpenAIRERaghavan Srinivasan;
Raghavan Srinivasan
Raghavan Srinivasan in OpenAIREdoi: 10.3390/su122410596
handle: 10261/253178
In the face of future climate change, Europe has encouraged the adoption of biofuel crops by its farmers. Such land-use changes can have significant impacts on the water balance and hydrological behavior of a system. While the heavy pesticide use associated with biofuel crops has been extensively studied, the water balance impacts of these crops have been far less studied. We conducted scenario analyses using the Soil and Water Assessment Tool (SWAT) to determine the effects of farm-scale biofuel crop adoption (rapeseed) on a basin’s water balance. We found that rapeseed adoption does not support the goal of developing a sustainable agricultural landscape in the Czech Republic. The adoption of rapeseed also had disproportionate effects on a basin’s water balance depending on its location in the basin. Additionally, discharge (especially surface runoff ratios), evapotranspiration, and available soil water content display significant shifts in the rapeseed adoption scenarios.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 38 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su122410596&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 New ZealandPublisher:MDPI AG Funded by:FWF | Kinetic energy of rainfal...FWF| Kinetic energy of rainfall as driving force of soil detachment and transportAuthors: Nives Zambon;Lisbeth Lolk Johannsen;
Lisbeth Lolk Johannsen
Lisbeth Lolk Johannsen in OpenAIREPeter Strauss;
Peter Strauss
Peter Strauss in OpenAIRETomas Dostal;
+4 AuthorsTomas Dostal
Tomas Dostal in OpenAIRENives Zambon;Lisbeth Lolk Johannsen;
Lisbeth Lolk Johannsen
Lisbeth Lolk Johannsen in OpenAIREPeter Strauss;
Peter Strauss
Peter Strauss in OpenAIRETomas Dostal;
Tomas Dostal
Tomas Dostal in OpenAIREDavid Zumr;
Martin Neumann;David Zumr
David Zumr in OpenAIREThomas A. Cochrane;
Andreas Klik;Thomas A. Cochrane
Thomas A. Cochrane in OpenAIREdoi: 10.3390/app10124103
handle: 10092/100711
The interaction between rainfall erosivity parameters and splash erosion is crucial for describing the soil erosion process; however, it is rarely investigated under natural rainfall conditions. In this study, we conducted splash erosion experiments under natural rainfall on three sites in Central Europe. The main goal was to obtain the relationship between splash erosion of the bare soil in seedbed condition and commonly used rainfall erosivity parameters (kinetic energy, intensity, and rainfall erosivity (EI30)). All sites were equipped with a rain gauge and an optical laser disdrometer where the splash erosion was measured, with modified Morgan splash cups. In order to investigate which parameter best describes the splash erosion process for all sites, a regression analysis was performed. In total, 80 splash erosion events were evaluated. Splash erosion can be described as a linear function of total kinetic energy and a non-linear function of EI30. However, the use of the total kinetic energy led to underestimation of the splash erosion rates for highly intensive rainfalls. Therefore, better results were obtained when using average rainfall intensity as the splash erosion predictor or the kinetic energy divided by the rainfall duration. Minor differences between the replicates during splash erosion measurements indicate that the modified Morgan splash cup provides a good tool for soil erosion assessment.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/12/4103/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Canterbury, Christchurch: UC Research RepositoryArticle . 2020License: CC BYFull-Text: https://hdl.handle.net/10092/100711Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10124103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/12/4103/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Canterbury, Christchurch: UC Research RepositoryArticle . 2020License: CC BYFull-Text: https://hdl.handle.net/10092/100711Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10124103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2020 New ZealandPublisher:MDPI AG Funded by:FWF | Kinetic energy of rainfal...FWF| Kinetic energy of rainfall as driving force of soil detachment and transportAuthors: Nives Zambon;Lisbeth Lolk Johannsen;
Lisbeth Lolk Johannsen
Lisbeth Lolk Johannsen in OpenAIREPeter Strauss;
Peter Strauss
Peter Strauss in OpenAIRETomas Dostal;
+4 AuthorsTomas Dostal
Tomas Dostal in OpenAIRENives Zambon;Lisbeth Lolk Johannsen;
Lisbeth Lolk Johannsen
Lisbeth Lolk Johannsen in OpenAIREPeter Strauss;
Peter Strauss
Peter Strauss in OpenAIRETomas Dostal;
Tomas Dostal
Tomas Dostal in OpenAIREDavid Zumr;
Martin Neumann;David Zumr
David Zumr in OpenAIREThomas A. Cochrane;
Andreas Klik;Thomas A. Cochrane
Thomas A. Cochrane in OpenAIREdoi: 10.3390/app10124103
handle: 10092/100711
The interaction between rainfall erosivity parameters and splash erosion is crucial for describing the soil erosion process; however, it is rarely investigated under natural rainfall conditions. In this study, we conducted splash erosion experiments under natural rainfall on three sites in Central Europe. The main goal was to obtain the relationship between splash erosion of the bare soil in seedbed condition and commonly used rainfall erosivity parameters (kinetic energy, intensity, and rainfall erosivity (EI30)). All sites were equipped with a rain gauge and an optical laser disdrometer where the splash erosion was measured, with modified Morgan splash cups. In order to investigate which parameter best describes the splash erosion process for all sites, a regression analysis was performed. In total, 80 splash erosion events were evaluated. Splash erosion can be described as a linear function of total kinetic energy and a non-linear function of EI30. However, the use of the total kinetic energy led to underestimation of the splash erosion rates for highly intensive rainfalls. Therefore, better results were obtained when using average rainfall intensity as the splash erosion predictor or the kinetic energy divided by the rainfall duration. Minor differences between the replicates during splash erosion measurements indicate that the modified Morgan splash cup provides a good tool for soil erosion assessment.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/12/4103/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Canterbury, Christchurch: UC Research RepositoryArticle . 2020License: CC BYFull-Text: https://hdl.handle.net/10092/100711Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10124103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/12/4103/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of Canterbury, Christchurch: UC Research RepositoryArticle . 2020License: CC BYFull-Text: https://hdl.handle.net/10092/100711Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10124103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu